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Abstract. A rigorous three-dimensional relativistic equation for quark–antiquark bound states at finite tem-
perature is derived from the thermal QCD generating functional which is formulated in the coherent-state
representation. The generating functional is derived newly and given a correct path-integral expression.
The perturbative expansion of the generating functional is specifically given by means of the stationary-
phase method. Especially, the interaction kernel in the three-dimensional equation is derived by virtue of
the equations of motion satisfied by some quark–antiquark Green functions and given a closed form which is
expressed in terms of only a few types of Green functions. This kernel is very suitable to use for exploring the
deconfinement of quarks. To demonstrate the applicability of the equation derived, the one-gluon exchange
kernel is derived and described in detail.

PACS. 05.30.-d; 67.40.Db; 11.15.-q; 12.38.-t; 11.10.St.

1 Introduction

Quantum chromodynamics (QCD), as a strong interaction
theory of quarks and gluons, has a distinctive property of
asymptotic freedom and infrared slavery which makes the
quarks and gluons to be confined in hadrons. It is widely
believed that in extreme conditions, i.e., at high tempera-
ture and/or high density, the quarks and gluons would
be deconfined from hadrons and form a new matter, the
quark–gluon plasma (QGP). It is highly expected that the
QCD phase transition from hadrons to QGP would take
place and would be observed in high energy heavy ion col-
lisions at RHIC [1–3]. Theoretically, to predict the QCD
phase transition, many efforts have beenmade by using dif-
ferent approaches such as the lattice simulation, the effect-
ive field theory, the hydrodynamic model etc. [4–14]. Ac-
cording to the prediction of the lattice QCD calculations,
the phase transition could occur when the colliding system
reaches temperatures 150–170MeV [2]. Since the quarks
and gluons are confined in hadrons, which exist as bound
states of quarks and/or gluons, it is obvious that a proper
approach of investigating the quark deconfinement is to
start from an exact relativistic equation for quark and/or
antiquark bound states at finite temperature. This pa-
per is devoted to deriving a rigorous three-dimensional
relativistic equation of Dirac–Schrödinger type for quark–
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antiquark (qq) bound states at finite temperature. In par-
ticular, the interaction kernel in the equation will be given
a closed and explicit expression which will be derived by
following the procedure described in [15–17]. This consti-
tutes the main purpose of this paper. Clearly, if the inter-
action kernel and the equation can be calculated by a suit-
able nonperturbation method, one can exactly determine
at which temperature the quark and antiquark will be de-
confined from mesons.
In this paper, we intend to derive the aforementioned

equation andkernel fromthe thermalQCDgenerating func-
tional formulated in the coherent-state representation. For
this derivation, we need first to give a correct expression
of the generating functional in the coherent-state repre-
sentation. This constitutes another purpose of this paper.
Here it is necessary tomention that the correspondingpath-
integral expressions for the partition functions and gener-
ating functionals given in the previous literature are not
correct [18–22]. The incorrectness is due to the fact that in
the previous path-integral expressions, the integral repre-
senting the trace is not separated out on the one hand and
the time-dependence of the integrand in the remaining part
of the path integral is given incorrectly on the other hand.
Such path-integral expressions can only be viewed as a for-
mal symbolism, because in practical calculations one has
to return to the original discretized forms which lead to the
path-integral expressions. If one tries to perform an ana-
lytical calculation of the path integrals by employing the
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generalmethods and formulas of computing functional inte-
grals, one would get a wrong result. The partition functions
and generating functionals for many-body systems dis-
cussed in quantum statistics were rederived in the coherent-
state representation and given correct functional-integral
expressions in the author’s previous paper [23]. These ex-
pressions are consistent with the corresponding coherent-
state representations of the transition amplitude and the
generating functional in the zero-temperature quantum
theory [24–26]. Particularly, when the functional integrals
are of Gaussian type, the partition functions and the gener-
ating functionals can exactly be calculated by means of the
stationary-phase method [25–27]. For the case of interact-
ing systems, the partition functions and finite-temperature
Green functions can be conveniently calculated from the
generating functionals by the perturbation method. The
coherent-state representation of the partition function and
the generating functional given in quantum statistics is now
extended to thermalQCD in this paper, giving a correct for-
mulation for the quantization of the thermal QCD in the
coherent-state representation.
The remainder of this paper is arranged as follows. In

Sect. 2, we quote the main results given in our previous pa-
per for the quantum statistical mechanics. These results
may straightforwardly be extended to the quantum field
theory. In Sect. 3, we describe the coherent-state repre-
sentation of the thermal QCD in the first order (or say,
Hamiltonian) formalism. In Sect. 4, the quantization of the
thermal QCD is performed in the coherent-state represen-
tation by writing out explicitly the generating functional
of thermal Green functions. To demonstrate the applica-
bility and correctness of the generating functional, we pay
attention to deriving the perturbative expansion of the
generating functional in the coherent-state representation.
Section 5 will be used to establish the three-dimensional
equation obeyed by the qq bound states at finite tempera-
ture. Section 6 serves to derive the closed expression of
the interaction kernel appearing in the three-dimensional
equation. In Sect. 7, the one-gluon exchange kernel and
Hamiltonian will be discussed in detail. In the last section,
some concluding remarks will be made. In the appendix,
the perturbative expansion of the generating functional
given in Sect. 4 will be transformed to the corresponding
one represented in the position space.

2 Path-integral formulation of quantum
statistics in the coherent-state
representation

First, we start from the partition function for a grand
canonical ensemble which usually is written in the
form [19–22]

Z =Tre−β
̂K , (1)

where β = 1
kT
with k and T being the Boltzmann constant

and the temperature and

̂K = ̂H−µ ̂N ; (2)

here µ is the chemical potential, and ̂H and ̂N are the
Hamiltonian and particle-number operators respectively.
In the coherent-state representation, the trace in (1) will
be represented by an integral over the coherent states. To
determine the concrete form of the integral, for simplicity,
let us start from an one-dimensional system. Its partition
function given in the particle-number representation is

Z =
∞
∑

n=0

〈n| e−β
̂K |n〉 . (3)

Then we use the completeness relation of the coherent
states [18–28]

∫

D(a∗a) | a〉〈a∗ |= 1 , (4)

where | a〉 denotes a normalized coherent state, i.e., the
eigenstate of the annihilation operator â with a complex
eigenvalue a [18–28]:

â |a〉= a |a〉 , (5)

whose Hermitian conjugate is

〈a∗| â+ = a∗ 〈a∗| (6)

and D(a∗a) symbolizes the integration measure defined
by [18–28]

D(a∗a) =

{

1
π
da∗da, for bosons;
da∗da, for fermions.

(7)

In the above, we have used the eigenvalues a and a∗ to
designate the eigenstates |a〉 and 〈a∗|, respectively. It is
emphasized that since we use the normalized eigenfunction
of the coherent state whose expression in its own represen-
tation will be shown in (15), the completeness relation in
(4) has the ordinary form as we are familiar with in quan-
tum mechanics. Inserting (4) into (3), we have

Z =
∞
∑

n=0

∫

D(a∗a)D(a′∗a′) 〈n | a′〉 〈a′∗| e−β
̂K |a〉 〈a∗ | n〉 ,

(8)

where

〈a∗ | n〉=
1
√
n!
(a∗)ne−a

∗a ,

〈n | a′〉=
1
√
n!
(a′)ne−a

′∗a′ (9)

are the energy eigenfunctions given in the coherent-state
representation (note that for fermions n = 0, 1) [20–26].
Both eigenfunctions commute with the matrix element
〈

a′∗ | e−β
̂K | a

〉

, because the operator ̂K(â+, â) generally

is a polynomial of the operator â+â for fermion systems. In
view of the expressions in (9) and the commutation rela-
tion [20–26]

a∗a′ =±a′a∗ , (10)
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where the signs “+” and “−” are attributed to bosons and
fermions respectively, it is easy to see

〈n | a′〉 〈a∗ | n〉= 〈±a∗ | n〉 〈n | a′〉 . (11)

Substituting (11) in (8) and applying the completeness re-
lations for the particle-number states and coherent ones,
one may find

Z =

∫

D(a∗a) 〈±a∗| e−β
̂K |a〉 , (12)

where the plus and minus signs in front of a∗ belong to
bosons and fermions respectively.
To evaluate the matrix element in (12), we may, as

usual, divide the “time”interval [0, β] into n equal and in-
finitesimal parts, β = nε. and then insert a completeness
relation shown in (4) at each dividing point. In this way,
(12) may be represented as [19–27]

Z =

∫

D(a∗a)

×
n−1
∏

i=1

D(a∗i ai) 〈±a
∗| e−ε

̂K |an−1〉
〈

a∗n−1
∣

∣ e−ε
̂K |an−2〉

×
〈

a∗i+1
∣

∣ e−ε
̂K |ai〉 〈a

∗
i | e
−ε ̂K |ai−1〉 〈a

∗
1| e
−ε ̂K |a〉 .

(13)

Since ε is infinitesimal, we can write

e−ε
̂K(â+,â) ≈ 1− ε ̂K(â+, â) , (14)

where ̂K(â+, â) is assumed to be normal-ordered. Noticing
this fact, when applying (5) and (6) and the inner product
of two coherent states [19–27]

〈a∗i | ai−1〉= e
− 12a

∗
i ai−

1
2a
∗
i−1ai−1+a

∗
i ai−1 , (15)

which is suitable to both bosons and fermions, one can get
from (13) that

Z =

∫

D(a∗a)e−a
∗a

×

∫ n−1
∏

i=1

D(a∗i ai) exp
{

− ε
n
∑

i=1

K(a∗i , ai−1)

+
n
∑

i=1

a∗i ai−1−
n−1
∑

i=1

a∗i ai

}

, (16)

where we have set

±a∗ = a∗n, a= a0 . (17)

It is noted that the factor e−a
∗a in the first integrand comes

from the matrix elements 〈±a∗| an−1〉 and 〈a∗1|a〉, and the
last sum in the above exponent is obtained by summing
up the common terms − 12a

∗
i ai and −

1
2a
∗
i−1ai−1 appear-

ing in the exponents of the matrix element 〈a∗i | ai−1〉 and
its adjacent ones 〈a∗i+1 | ai〉 and 〈a

∗
i−1 | ai−2〉. As will be

seen in (21), such a summation is essential to give a correct
time-dependence of the functional integrand in the parti-
tion function. The last two sums in (16) can be rewritten in
the form

n
∑

i=1

a∗i ai−1−
n−1
∑

i=1

a∗i ai

=
1

2
a∗nan−1+

1

2
a∗1a0

+
ε

2

n−1
∑

i=1

[(

a∗i+1−a
∗
i

ε

)

ai−a
∗
i

(

ai−ai−1
ε

)]

. (18)

Upon substituting (18) in (16) and taking the limit ε→ 0,
we obtain the path-integral expression of the partition
functions as follows:

Z =

∫

D(a∗a)e−a
∗a

∫

D(a∗a)eI(a
∗,a) , (19)

where

D(a∗a) =

⎧

⎨

⎩

∏

τ

1
π
da∗(τ)da(τ), for bosons;

∏

τ

da∗(τ)da(τ), for fermions
(20)

and

I(a∗, a) =
1

2
a∗(β)a(β)+

1

2
a∗(0)a(0)

−

∫ β

0

dτ

[

1

2
a∗(τ)ȧ(τ)−

1

2
ȧ∗(τ)a(τ)

+K(a∗(τ), a(τ))

]

= a∗(β)a(β)−

∫ β

0

dτ
[

a∗(τ)ȧ(τ)+K(a∗(τ), a(τ))
]

,

(21)

where the last equality is obtained from the first one by
a partial integration. In accordance with the definition
given in (17), we see, the path-integral is subject to the fol-
lowing boundary conditions:

a∗(β) =±a∗, a(0) = a , (22)

where the signs “+” and “−” are written respectively for
bosons and fermions. Here it is noted that (22) does not im-
plies a(β) =±a and a∗(0) = a∗. Actually, we have no such
boundary conditions.
For systems with many degrees of freedom, the func-

tional-integral representation of the partition functions
may directly be written out from the results given in
(19)–(22) as long as the eigenvalues a and a∗ are under-
stood as column matrices a= (a1, a2, · · ·, ak, · · ·) and a∗ =
(a∗1, a

∗
2, · · ·, a

∗
k, · · ·). Written explicitly, we have

Z =

∫

D(a∗a)e−a
∗
kak

∫

D(a∗a)eI(a
∗,a) , (23)
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where

D(a∗a) =

⎧

⎪

⎨

⎪

⎩

∏

k

1
π
da∗kdak, for bosons;

∏

k

da∗kdak, for fermions,
(24)

D(a∗a) =

⎧

⎪

⎨

⎪

⎩

∏

kτ

1
πda

∗
k(τ)dak(τ), for bosons;

∏

kτ

da∗k(τ)dak(τ), for fermions
(25)

and

I(a∗, a) = a∗k(β)ak(β)

−

∫ β

0

dτ

[

a∗k(τ)ȧk(τ)+K
(

a∗k(τ), ak(τ)
)

]

.

(26)

The boundary conditions in (22) now become

a∗k(β) =±a
∗
k, ak(0) = ak . (27)

In (23) and (26), the repeated indices imply the summa-
tions over k. If the k stands for a continuous index as in
the case of quantum field theory, the summations will be
replaced by integrations over k.
It should be pointed out that in the previous deriva-

tion of the coherent-state representation of the partition
functions, the authors did not use the expressions given
in (16) and (18). Instead, the matrix element in (15) was
directly chosen to be the starting point and recast in the
form [18–22]

〈a∗i

∣

∣

∣ai−1〉

= exp

{

−
ε

2

[

a∗i

(

ai−ai−1
ε

)

−

(

a∗i −a
∗
i−1

ε

)

ai−1

]}

.

(28)

Substituting the above expression into (13) and taking the
limit ε→ 0, it follows that [18–22]

Z =

∫

D(a∗a) exp

{

−

∫ β

0

dτ

[

1

2
a∗(τ)ȧ(τ)−

1

2
ȧ∗(τ)a(τ)

+K(a∗(τ), a(τ))

]}

. (29)

Clearly, in the above derivation, the common terms ap-
pearing in the exponents of adjacent matrix elements were
not combined together. As a result, the time-dependence
of the integrand in (29) could not be given correctly. In
comparison with the previous result shown in (29), the ex-
pression written in (19)–(21) has two functional integrals.
The first integral which represents the trace in (1) is ab-
sent in (29). The second integral is defined as the same as
the integral in (29); but the integrand are different from
each other. In (19), there occur two additional factors in
the integrand: one is e−a

∗a which comes from the initial

and final states in (13), another is e
1
2 [a
∗(β)a(β)+a∗(0)a(0)]

in which a∗(β) and a(0) are related to the boundary con-
ditions shown in (22). These additional factors are also
absent in (29). As will be seen soon, the occurrence of these
factors in the functional-integral expression is essential to
give correct calculated results.
To demonstrate the correctness of the expression given

in (23)–(27), let us compute the partition function for the
systemwhose Hamiltonian is of harmonic oscillator type as
we meet in the cases of ideal gases and free fields. In this
case,

K(a∗a) = ωka
∗
kak , (30)

where ωk = εk−µ with εk being the particle energy, and
therefore (26) becomes

I(a∗, a) = a∗k(β)ak(β)

−

∫ β

0

dτ [a∗k(τ)ȧk(τ)+ωka
∗
k(τ)ak(τ)] . (31)

By the stationary-phasemethod which is established based
on the property of the Gaussian integral that the integral is
equal to the extremum of the integrand which is an expo-
nential function [25–27], we may write

∫

D(a∗a)eI(a
∗,a) = eI0(a

∗,a) , (32)

where I0(a
∗, a) is obtained from I(a∗, a) by replacing

the variables a∗k(τ) and ak(τ) in I(a
∗, a) with those

values which are determined from the stationary condition
δI(a∗, a) = 0. From this condition and the boundary condi-
tions in (27) which implies δa∗k(β) = 0 and δak(0) = 0, it is
easy to derive the following equations of motion [24–26]:

ȧk(τ)+ωkak(τ) = 0, ȧ
∗
k(τ)−ωka

∗
k(τ) = 0 . (33)

Their solutions satisfying the boundary condition are

ak(τ) = ake
−ωkτ , a∗k(τ) =±a

∗
ke
ωk(τ−β) . (34)

On substituting the above solutions into (31), we obtain

I0(a
∗, a) =±a∗kake

−ωkβ . (35)

With the functional integral given in (32) and (35), the par-
tition functions in (23) become

Z0 =

{

∫

D(a∗a)e−a
∗
kak(1−e

−βωk ), for bosons;
∫

D(a∗a)e−a
∗
kak(1+e

−βωk ), for fermions.
(36)

For the boson case, the above integral can directly be cal-
culated by employing the integration formula [18]:

∫

D(a∗a)e−a
∗(λa−b)f(a) =

1

λ
f(λ−1b) (37)

The result is well-known, as shown in the following [20–22,
29]:

Z0 =
∏

k

1

1− e−βωk
. (38)
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For the fermion case, by using the property of a Grassmann
algebra and the integration formulas [21–26]:

∫

da=

∫

da∗ = 0,

∫

da∗a∗ =

∫

daa= 1 (39)

it is easy to compute the integral in (36) and get the famil-
iar result [21–23,29]

Z0 =
∏

k

(1+e−βωk) . (40)

It is noted that if the stationary-phase method is applied
to the functional integral in (29), one could not get the re-
sults as written in (38) and (40), showing the incorrectness
of the previous functional-integral representation for the
partition functions.
Now let us turn to discuss the general case where the

Hamiltonian can be split into a free part and an interaction
part. Correspondingly, we can write

K(a∗, a) =K0(a
∗, a)+HI(a

∗, a) , (41)

where K0(a
∗, a) is the same as given in (30) and HI(a

∗, a)
is the interaction Hamiltonian. In this case, to evaluate the
partition function, it is convenient to define a generating
functional through introducing external sources j∗k(τ) and
jk(τ) such that [21–23]

Z[j∗, j] =

∫

D(a∗a)e−a∗kak
∫

D(a∗a) exp
{

a∗k(β)ak(β)

−

∫ β

0

dτ
[

a∗k(τ)ȧk(τ)+K(a
∗a)

− j∗k(τ)ak(τ)−a
∗
k(τ)jk(τ)

]

}

= e
−
∫ β
0 dτHI

(

δ
δj∗
k
(τ)
,± δ
δjk(τ)

)

Z0[j
∗, j] , (42)

where the signs “+” and “−” in front of δ
δjk(τ)

refer to

bosons and fermions respectively, and Z0[j
∗, j] is defined

by

Z0[j
∗, j] =

∫

D(a∗a)e−a
∗
kak

∫

D(a∗a)eI(a
∗,a;j∗,j) , (43)

in which

I(a∗, a; j∗, j) = a∗k(β)ak(β)

−

∫ β

0

dτ
[

a∗k(τ)ȧk(τ)+ωka
∗
k(τ)ak(τ)

− j∗k(τ)ak(τ)−a
∗
k(τ)jk(τ)

]

. (44)

Obviously, the integral in (43) is of Gaussian type. There-
fore, it can be calculated by means of the stationary-phase
method as will be shown in detail in Sect. 4.
The exact partition functions can be obtained from

the generating functional in (42) by setting the external
sources to be zero:

Z = Z[j∗, j]
∣

∣

∣

j∗=j=0
. (45)

In particular, the generating functional is much useful to
compute the finite-temperature Green functions. For sim-
plicity, we take the two-point Green function as an example
to show this point. In many-body theory, the Green func-
tion usually is defined in the operator formalism by [21, 29]

Gkl(τ1, τ2) =
1

Z
Tr

{

e−β
̂KT [âk(τ1)â

+
l (τ2)]

}

=Tr
{

eβ(Ω−
̂K)T [âk(τ1)â

+
l (τ2)]

}

, (46)

where 0< τ1, τ2 < β, Ω =−
1
β lnZ is the grand canonical

potential, T denotes the “time” ordering operator, âk(τ1)
and â+l (τ2) represent the annihilation and creation opera-
tors respectively. According to the procedure described in
(12)–(22). It is clear to see that when taking τ1 and τ2 at
two dividing points and applying (5) and (6), the Green
function may be expressed as a functional integral in the
coherent-state representation as follows:

Gkl(τ1, τ2) =
1

Z

∫

D(a∗a)e−a
∗
kak

×

∫

D(a∗a)ak(τ1)a
∗
l (τ2)e

I(a∗,a) . (47)

With the aid of the generating functional defined in (42),
the above Green function may be represented as

Gkl(τ1, τ2) =±
1

Z

δ2Z[j∗, j]

δj∗k(τ1)δjl(τ2)

∣

∣

∣

j∗=j=0
, (48)

where the sings “+” and “−” belong to bosons and
fermions respectively.

3 The coherent-state representation of
thermal QCD Hamiltonian and action

To write out explicitly a path-integral expression of ther-
mal QCD in the coherent-state representation, we first
need to formulate the QCD in the coherent-state repre-
sentation, namely, to give exact expressions of the QCD
Hamiltonian and action in the coherent-state represen-
tation. For this purpose, we only need to work with
the classical fields by using some skilful treatments. Let
us start from the effective Lagrangian density of QCD
which appears in the path-integral of the zero-temperature
QCD [22, 25, 26]

L= ψ̄
{

iγµ
(

∂µ− igT
aAaµ

)

−m
}

ψ−
1

4
F aµνF aµν

−
1

2α

(

∂µAaµ
)2
−∂µC̄aDabµ C

b , (49)

where T a = λa/2 is the color matrix, ψ and ψ̄ represent the
quark fields,Aaµ are the vector potentials of gluon fields,C

a

and C̄a designate the ghost fields,

F aµν = ∂µA
a
ν −∂νA

a
µ+ gf

abcAbµA
c
ν (50)
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and

Dabµ = δ
ab∂µ− gf

abcAcµ . (51)

For the sake of simplicity, we work in the Feynman gauge
(α = 1). It is well-known that, in this gauge, the results
obtained from the above Lagrangian are equivalent to
those derived from the following Lagrangian,which is given
by applying the Lorentz condition ∂µAaµ = 0 to the La-
grangian in (49):

L= ψ̄
{

iγµ
(

∂µ− igT
aAaµ

)

−m
}

ψ−
1

2
∂µA

a
ν∂
µAaν

− gfabc∂µA
a
νA
bµAcν −

1

4
g2fabcfadeAbµAcνAdµA

e
ν

−∂µC̄a∂µC
b+ gfabc∂µC̄aCbAcµ . (52)

Here it is noted that the application of the Lorentz condi-
tion only changes the form of the free part of the gluon La-
grangian, remaining the interaction part of the Lagrangian
in (49) formally unchanged. The above Lagrangian is writ-
ten in the Minkowski metric where the γ-matrix is defined
as γ0 = β and γ = βα [26]. In the following, it is convenient
to represent the Lagrangian in the Euclidean metric with
the imaginary time τ = it where t is the real time.
Since the path-integral in (42) is established in the

first order (or say, Hamiltonian) formalism, to perform
the path-integral quantization of thermal QCD in the
coherent-state representation, we need to recast the above
Lagrangian in the first order form. In doing this, it is neces-
sary to introduce canonical conjugate momentum densities
which are defined by [26, 30]

Πψ =
∂L

∂∂tψ
= iψγ0 = iψ+,

Πψ =
∂L

∂∂tψ
= 0,

Πaµ =
∂L

∂∂tAaµ
=−∂tA

a
µ+ gf

abcAbµA
c
0,

Πa =

(

∂L

∂∂tCa

)

R

=−∂tC
a
,

Π
a
=

(

∂L

∂∂tC
a

)

L

=−∂tC
a+ gfabcCbAc0 , (53)

where the subscripts R and L mark the right- and left-
derivatives with respect to the real time respectively. With
the above momentum densities, the Lagrangian in (52) can
be represented as

L=Πψ∂tψ+Π
aµ∂tA

a
µ+Π

a∂tC
a+∂tC

a
Π−H , (54)

where

H=H0+HI (55)

is the Hamiltonian density in which

H0 = ψ̄(γ ·∇+m)ψ+
1

2
(Πaµ)

2−
1

2
Aaµ∇

2Aaµ

−ΠaΠ
a
+ C̄a∇2Ca (56)

is the free Hamiltonian density and

HI = igψ̄T
aγµA

a
µψ+ gf

abc
(

iΠaµA
c
4+∂iA

a
µA
c
i

)

Abµ

−
1

4
g2fabcfadeAbµA

d
µ (A

c
4A
e
4−A

c
iA
e
i )

+ gfabc
(

iΠaAc4−∂iC̄
aAci

)

Cb (57)

is the interaction Hamiltonian density and the Latin let-
ter i denotes the spatial index. The above Hamiltonian
density is written in the Euclidean metric for later conve-
nience. The matrix γµ in this metric is defined by γ4 = β
and γ =−iβα [30]. It should be noted that the conjugate
quantities Πa and Π

a
for the ghost fields are respectively

defined by the right-derivative and the left one as shown in
(53) because only in this way one can get correct results.
This unusual definition originates from the peculiar prop-
erty of the ghost fields which are scalar fields, but subject
to the commutation rule of a Grassmann algebra.
In order to derive an expression of the thermal QCD in

the coherent-state representation, one should employ the
Fourier transformations for the canonical variables of the
QCD which are listed below. For the quark field [26, 30],

ψ(x, τ) =

∫

d3p

(2π)3/2

[

us(p)bs(p, τ)e
ipx

+ vs(p)d∗s(p, τ)e
−ipx

]

(58)

ψ(x, τ) =

∫

d3p

(2π)3/2

[

us(p)b∗s(p, τ)e
−ipx

+ vs(p)ds(p, τ)e
ipx

]

, (59)

where us(p) and vs(p) are the spinor wave functions
satisfying the normalization conditions us+(p)us(p) =
vs+(p)vs(p) = 1, bs(p, τ) and b

∗
s(p, τ) are the eigenvalues

of the quark annihilation and creation operators ̂bs(p, τ)
and ̂b+s (p, τ) which are defined in the Heisenberg picture,
ds(p, τ) and d

∗
s(p, τ) are the corresponding ones for anti-

quarks. For the gluon field [26, 30],

Acµ(x, τ) =

∫

d3k

(2π)3/2
1

√

2ω(k)
ελµ(k)

×

[

acλ(k, τ)e
ikx+ac∗λ (k, τ)e

−ikx

]

,

(60)

where ελµ(k) is the polarization vector and

Πcµ(x, τ) = i

∫

d3k

(2π)3/2

√

ω(k)

2
ελµ(k)

×

[

acλ(k, τ)e
ikx−ac∗λ (k, τ)e

−ikx

]

, (61)

which follows from the definition in (53) and is consistent
with the Fourier representation of free fields. In the above,
acλ(k, τ) and a

c∗
λ (k, τ) are the eigenvalues of the gluon anni-

hilation and creation operators âcλ(k, τ) and â
c+
λ (k, τ). For
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the ghost field, we have

C
a
(x, τ) =

∫

d3q

(2π)3/2
1

√

2ω(q)

×

[

ca(q, τ)e
iqx+ c∗a(q, τ)e

−iqx

]

, (62)

Ca(x, τ) =

∫

d3q

(2π)3/2
1

√

2ω(q)

×

[

ca(q, τ)e
iqx+ c∗a(q, τ)e

−iqx

]

, (63)

Πa(x, τ) = i

∫

d3q

(2π)3/2

√

ω(q)

2

×

[

ca(q, τ)e
iqx− c∗a(q, τ)e

−iqx

]

, (64)

and

Π
a
(x, τ) = i

∫

d3q

(2π)3/2

√

ω(q)

2

×

[

ca(q, τ)e
iqx− c∗a(q, τ)e

−iqx

]

, (65)

where ca(q, τ) and c
∗
a(q, τ) are the eigenvalues of the ghost

particle annihilation and creation operators ĉa(q, τ) and
ĉ+a (q, τ) and ca(q, τ) and c

∗
a(q, τ) are the ones for antighost

particles.
For simplifying the expressions of the Hamiltonian and

action of the thermal QCD, it is convenient to use abbrevi-
ation notations. Define

bθs(p, τ) =

{

bs(p, τ), if θ =+,
d∗s(p, τ), if θ =−,

}

(66)

W θs (p) =

{

(2π)−3/2us(p), if θ =+,
(2π)−3/2vs(p), if θ =−

}

(67)

and furthermore, set α= (p, s, θ) and

∑

α

=
∑

sθ

∫

d3p ; (68)

equations (58) and (59) may be represented as

ψ(x, τ) =
∑

α

Wαbα(τ)e
iθpx,

ψ(x, τ) =
∑

α

Wαb
∗
α(τ)e

−iθpx . (69)

Similarly, when we define

acλθ(k, τ) =

{

acλ(k, τ), if θ =+,
ac∗λ (k, τ), if θ =−,

}

(70)

Acλµθ(k) = (2π)
−3/2(2ω(k))−1/2ελµ(k),

Πcλµθ(k) = i
θ(2π)−3/2[ω(q)/2]1/2ελµ(k) (71)

and furthermore, set α= (k, c, λ, θ) and

∑

α

=
∑

cλθ

∫

d3k; (72)

equations (60) and (61) can be written as

Acµ(x, τ) =
∑

α

Aαµaα(τ)e
iθkx,

Πcµ(x, τ) =
∑

α

Παµ aα(τ)e
iθkx . (73)

For the ghost fields, if we define

cθα(q, τ) =

{

ca(q, τ), if θ =+,
c∗a(q, τ), if θ =−,

}

(74)

Gθ(q) = (2π)
−3/2[2ω(q)]−1/2,

Πθ(q) = i
θ(2π)−3/2[ω(q)/2]1/2, (75)

and furthermore set α= (q, a, θ) and

∑

α

=
∑

aθ

∫

d3q ; (76)

then (62)–(65) will be expressed as

C
a
(x, τ) =

∑

α

Gαcα(τ)e
iθqx ,

Ca(x, τ) =
∑

α

Gαc
∗
α(τ)e

−iθqx ,

Πa(x, τ) =
∑

α

Παcα(τ)e
iθqx ,

Π
a
(x, τ) =

∑

α

Παc
∗
α(τ)e

−iθqx . (77)

Upon substituting (69), (73) and (77) into (56) and
(57), it is not difficult to get

H0(τ) =

∫

d3xH0(x)

=
∑

α

θαεαb
∗
α(τ)bα(τ)+

1

2

∑

α

ωαa
∗
α(τ)aα(τ)

+
∑

α

ωαc
∗
α(τ)cα(τ) (78)

and

HI(τ) =

∫

d3xHI(x)

=
∑

αβγ

A(αβγ)b∗α(τ)bβ(τ)aγ(τ)

+
∑

αβγ

B(αβγ)aα(τ)aβ(τ)aγ(τ)

+
∑

αβγδ

C(αβγδ)aα(τ)aβ(τ)aγ(τ)aδ(τ)

+
∑

αβγ

D(αβγ)c∗α(τ)cβ(τ)aγ(τ) , (79)
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which are the QCD Hamiltonian given in the coherent-
state representation. In (78), the first, second and third
terms are the free Hamiltonians for quarks, gluons and
ghost particles respectively where θα ≡ θ, εα = (p2+
m2)1/2 is the quark energy, ωα = |k| is the energy for
a gluon or a ghost particle. In (79), the first term is the
interaction Hamiltonian between quarks and gluons, the
second and third terms are the interaction Hamiltonian
among gluons and the fourth term represents the interac-
tion Hamiltonian between ghost particles and gluons. The
coefficient functions in (79) are defined as follows:

A(αβγ) = ig(2π)3δ3(θαpα− θβpβ− θγkγ)

×W
θα
sα
(pα)T

aγµW
θβ
sα (pβ)A

aλγ
µθγ
(kγ) , (80)

B(αβγ) = ig(2π)3δ3(θαkα+ θβkβ+ θγkγ)

×fabc
[

Πaλαµθα (kα)A
cλγ
4θγ
(kγ)

+ θαk
α
i A
aλα
µθα(kα)A

cλγ
iθγ
(kγ)

]

A
bλβ
µθβ
(kβ), (81)

C(αβγδ) =−
1

4
g2(2π)3δ3(θαkα+ θβkβ+ θρkρ+ θσkσ)

×fabcfadeAbλαµθα(kα)A
dλβ
µθβ
(kβ)

×
[

A
cλρ
4θρ
(kρ)A

eλσ
4θσ
(kσ)−A

cλρ
iθρ
(kρ)A

eλσ
iθσ
(kσ)

]

(82)

and

D(αβγ) = ig(2π)3δ3(θαqα− θβqβ− θγkγ)f
abcGaθα(qα)

×
[

Πbθβ(qβ)A
cλγ
4θγ
(kγ)− θαk

α
i G
b
θβ
(qβ)A

cλγ
iθγ
(kγ)

]

.

(83)

It is emphasized that the expressions in (78) and (79)
are just the Hamiltonian of QCD appearing in the path-
integral as shown in (42), where all the creation and anni-
hilation operators in the Hamiltonian (which are written in
a normal product) are replaced by their eigenvalues.
To write the path-integral of thermal QCD, we need

also an expression for the action S given in the coherent-
state representation. This action can be obtained by using
the Lagrangian density shown in (54). By partial integra-
tion and considering the following boundary conditions of
the fields [20–22]:

ψ(x, 0) = ψ(x), ψ(x, 0) = ψ(x),

ψ(x, β) =−ψ(x), ψ(x, β) =−ψ(x), (84)

Acµ(x, 0) = A
c
µ(x, β) =A

c
µ(x),

Πcµ(x, 0) =Π
c
µ(x, β) =Π

c
µ(x) (85)

and

C
a
(x, 0) = C

a
(x, β) = C

a
(x),

Ca(x, 0) = Ca(x, β) = Ca(x),

Π
a
(x, 0) =Π

a
(x, β) =Π

a
(x),

Πa(x, 0) =Πa(x, β) =Πa(x); (86)

the action given by the Lagrangian density in (54) can be
represented in the form

S =

∫ β

0

dτ

∫

d3x
{1

2
[ψ+(x, τ)ψ̇(x, τ)− ψ̇+(x, τ)ψ(x, τ)]

+
i

2

[

Πcµ(x, τ)Ȧ
c
µ(x, τ)− Π̇

c
µ(x, τ)A

c
µ(x, τ)

]

+
i

2

[

Πa(x, τ)Ċa(x, τ)− Π̇a(x, τ)Ca(x, τ)

+Ċa(x, τ)Πa(x, τ)−Ca(x, τ)Π̇a(x, τ)
]

−H(x, τ)
}

,

(87)

where the first relation in (53) has been used, and the sym-
bol “·” in ψ̇(x, τ), Ȧcµ(x, τ) · · · now denotes the derivatives
of the fields with respect to the imaginary time τ . It is
stressed here that only the above expression is appropri-
ate to use for deriving the coherent-state representation of
the action by making use of the Fourier expansions writ-
ten in (58)–(65). On inserting (58)–(65) into (87), it is not
difficult to get

S =−

∫ β

0

dτ

{

∫

d3k
{1

2

[

b∗s(k, τ)ḃs(k, τ)− ḃ
∗
s(k, τ)bs(k, τ)

]

+
1

2

[

d∗s(k, τ)ḋs(k, τ)− ḋ
∗
s(k, τ)ds(k, τ)

]

+
1

2
[ac∗λ (k, τ)ȧ

c
λ(k, τ)− ȧ

c∗
λ (k, τ)a

c
λ(k, τ)]

+
1

2

[

c∗a(k, τ)ċa(k, τ)− ċ
∗
a(k, τ)ca(k, τ)

−c∗a(k, τ)ċa(k, τ)+ ċ
∗
a(k, τ)ca(k, τ)]

}

+H(τ)

}

=−SE , (88)

where H(τ) is given by the sum of the Hamiltonians in
(78) and (79) and SE is the action defined in the Euclidean
metric. It is noted that if one considers a grand canonical
ensemble of QCD, the Hamiltonian in (88) should be re-
placed byK(τ) defined in (2). Employing the abbreviation
notation as denoted in (66), (70) and (74) and letting qα
stand for (aα, bα, cα), the action may be compactly repre-
sented as

SE =

∫ β

0

dτ

{

∑

α

1

2
[q∗α(τ)◦ q̇α(τ)− q̇

∗
α(τ)◦ qα(τ)]+H(τ)

}

,

(89)

where we have defined

q∗α ◦ qα = aα−aα++ b
∗
αbα+ θαc

∗
αcα . (90)

It is emphasized that the θα =± is now contained in the
subscript α. Therefore, each α may take the value α+

and/or α− as the first term in (90) does.
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4 Generating functional of Green functions
for thermal QCD

With the action SE given in the preceding section, the
quantization of the thermal QCD in the coherent-state rep-
resentation is easily implemented by writing out its gen-
erating functional of thermal Green functions. According
to the general formula shown in (42), the QCD generating
functional can be formulated as

Z[j] =

∫

D(q∗ · q)e−q
∗·q

∫

D(q∗ · q) exp
{1

2
[q∗(β) · q(β)

− q∗(0) · q(0)]−SE+

∫ β

0

dτj∗(τ) · q(τ)
}

, (91)

where we have defined

q∗ · q =
1

2
a∗αaα+ θαb

∗
αbα+ c

∗
αcα (92)

and

j∗ · q = ξ∗αaα+ θα(η
∗
αbα+ b

∗
αηα+ ζ

∗
αcα+ c

∗
αζα) (93)

here ξα, ηα and ζα are the sources for gluons, quarks and
ghost particles respectively and the repeated index implies
summation. It is noted that the product q∗ ·q defined above
is different from the q∗α ◦ qα defined in (90) in the terms for
quarks and ghost particles and the subscript α in (92) and
(93) is also defined by containing θα =±. In what follows,
we assign α± to represent the α with θα =±. According to
this notation, the sources in (93) are specifically defined as
follows:

ξα+ = ξα, ξα− = ξ
∗
α

ηα+ = ηα, ηα− = η
∗
α

ζα+ = ζα, ζα− = ζ
∗
α , (94)

where the subscript α on the right hand side of each
equality no longer contains θα and the gluon term in (92)
(1/2)a∗αaα may be replaced by aα−aα+ . The integration
measures D(q∗q) and D(q∗q) are defined as in (24) and
(25).
The generating functional in (91) is nonperturbative.

Now we are interested in describing the perturbation
method of calculating the QCD generating functional.
Since the Hamiltonian can be split into two parts H0(τ)
and HI(τ) as shown in (78) and (79), the generating func-
tional in (91) may be perturbatively represented in the
form

Z[j] = exp

{

−

∫ β

0

dτHI

(

δ

δj(τ)

)

}

Z0[j] , (95)

where Z0[j] is the generating functional for the free system
and the exponential may be expanded in a Taylor series.
In the above, the commutativity betweenHI and Z

0[j] has
been considered. Obviously, the Z0[j] can be written as

Z0[j] = Z0g [ξ]Z
0
q [η]Z

0
c [ζ] , (96)

whereZ0g [ξ], Z
0
q [η] and Z

0
c [ζ] are the generating functionals

contributed from the free Hamiltonians of gluons, quarks
and ghost particles respectively. They are separately and
specifically described below.
In view of the expressions in (91), (88) and (78), the

generating functional Z0g [ξ] is of the form

Z0g [ξ] =

∫

D(a∗a) exp

{

−

∫

d3ka∗λ(k)aλ(k)

}

×

∫

D(a∗a) exp {Ig (a
∗
λ, aλ; ξ

∗
λ, ξλ)} , (97)

where

Ig (a
∗
λ, aλ; ξ

∗
λ, ξλ)

=

∫

d3k
1

2
[a∗λ(k, β)aλ(k, β)+a

∗
λ(k, 0)aλ(k, 0)]

−

∫ β

0

dτ

∫

d3k
{1

2
[a∗λ(k, τ)ȧλ(k, τ)− ȧ

∗
λ(k, τ)aλ(k, τ)]

+ω(k)a∗λ(k, τ)aλ(k, τ)

− ξ∗λ(k, τ)aλ(k, τ)−a
∗
λ(k, τ)ξλ(k, τ)

}

(98)

and

D(a∗a) =
∏

kλ

1

π
da∗λ(k)daλ(k),

D(a∗a) =
∏

kλτ

1

π
da∗λ(k, τ)daλ(k, τ) . (99)

The subscript λ in the above is now assigned to denote
polarization and color. When we perform a partial integra-
tion, (98) becomes

Ig(a
∗
λ, aλ; ξ

∗
λ, ξλ)

=

∫

d3ka∗λ(k, β)aλ(k, β)−

∫ β

0

dτ

∫

d3k
{

a∗λ(k, τ)ȧλ(k, τ)

+ω(k)a∗λ(k, τ)aλ(k, τ)− ξ
∗
λ(k, τ)aλ(k, τ)

−a∗λ(k, τ)ξλ(k, τ)
}

. (100)

For the generating functional Z0q [η], we can write

Z0q [η] =

∫

D(b∗bd∗d)

× exp

{

−

∫

d3k [b∗s(k)bs(k)+d
∗
s(k)ds(k)]

}

×

∫

D(b∗bd∗d) exp {Iq (b
∗
s, bs, d

∗
s , ds; η

∗
s , ηs, η

∗
s , ηs)} ,

(101)

where

Iq (b
∗
s, bs, d

∗
s, ds; η

∗
s , ηs, η

∗
s , ηs)

=

∫

d3k
1

2

[

b∗s(k, β)bs(k, β)+d
∗
s(k, β)ds(k, β)

+ b∗s(k, 0)bs(k, 0)+d
∗
s(k, 0)ds(k, 0)

]
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−

∫ β

0

dτ

∫

d3k
{1

2

[

b∗s(k, τ)ḃs(k, τ)− ḃ
∗
s(k, τ)bs(k, τ)

]

+
1

2

[

d∗s(k, τ)ḋs(k, τ)− ḋ
∗
s(k, τ)ds(k, τ)

]

+ ε(k)
[

b∗s(k, τ)bs(k, τ)+d
∗
s(k, τ)ds(k, τ)

]

−
[

η∗s(k, τ)bs(k, τ)+ b
∗
s(k, τ)ηs(k, τ)+η

∗
s(k, τ)ds(k, τ)

+d∗s(k, τ)ηsk, τ
]

}

(102)

and

D(b∗bd∗d) =
∏

ks

db∗s(k)dbs(k)dd
∗
s(k)dds(k),

D(b∗bd∗d) =
∏

ksτ

db∗s(k, τ)dbs(k, τ)dd
∗
s(k, τ)dds(k, τ) ,

(103)

in which the subscript s stands for spin, color and flavor.
By a partial integration over τ , (102) may be given a sim-
pler expression:

Iq (b
∗
s, bs, d

∗
s , ds; η

∗
s , ηs, η

∗
s, ηs)

=

∫

d3k
[

b∗s(k, β)bs(k, β)+d
∗
s(k, β)ds(k, β)

]

−

∫ β

0

dτ

∫

d3k
{

b∗s(k, τ)ḃs(k, τ)+d
∗
s(k, τ)ḋs(k, τ)

+ ε(k)
[

b∗s(k, τ)bs(k, τ)+d
∗
s(k, τ)ds(k, τ)

]

−
[

η∗s(k, τ)bs(k, τ)+ b
∗
s(k, τ)ηs(k, τ)+η

∗
s(k, τ)ds(k, τ)

+d∗s(k, τ)ηsk, τ
]

}

. (104)

As for the generating functional Z0c [ζ], we have

Z0c [ζ] =

∫

D(c∗ccc∗)

× exp

{

−

∫

d3k
[

c∗a(k)ca(k)− c
∗
a(k)ca(k)

]

}

×

∫

D(c∗ccc∗) exp
{

Ic
(

c∗a, ca, c
∗
a, ca; ζ

∗
a , ζa, ζ

∗
a, ζa

)

}

,

(105)

where

Ic
(

c∗a, ca, c
∗
a, ca; ζ

∗
a , ζa, ζ

∗
a, ζa

)

=

∫

d3k
1

2

[

c∗a(k, β)ca(k, β)− c
∗
a(k, β)ca(k, β)

+ c∗a(k, 0)ca(k, 0)− c
∗
a(k, 0)ca(k, 0)

]

−

∫ β

0

dτ

∫

d3k
{1

2

[

c∗a(k, τ)ċa(k, τ)− ċ
∗
a(k, τ)ca(k, τ)

]

−
1

2

[

c∗a(k, τ)ċa(k, τ)− ċ
∗
a(k, τ)ca(k, τ)

]

+ω(k)
[

c∗a(k, τ)ca(k, τ)− c
∗
a(k, τ)ca(k, τ)

]

−
[

ζ∗a(k, τ)ca(k, τ)+ c
∗
a(k, τ)ζa(k, τ)

+ ζ
∗
a(k, τ)ca(k, τ)+ c

∗
a(k, τ)ζa(k, τ)

]

}

(106)

and

D(c∗ccc∗) =
∏

ka

dc∗a(k)dca(k)dca(k)dc
∗
a(k),

D(c∗ccc∗) =
∏

kaτ

dc∗a(k, τ)dca(k, τ)dca(k, τ)dc
∗
a(k, τ) ,

(107)

in which the subscript a is a color index. After a partial
integration, (106) is reduced to

Ic
(

c∗a, ca, c
∗
a, ca; ζ

∗
a , ζa, ζ

∗
a, ζa

)

=

∫

d3k
[

c∗a(k, β)ca(k, β)− c
∗
a(k, β)ca(k, β)

]

−

∫ β

0

dτ

∫

d3k
{

c∗a(k, τ)ċa(k, τ)− c
∗
a(k, τ)ċa(k, τ)

+ω(k)
[

c∗a(k, τ)ca(k, τ)− c
∗
a(k, τ)ca(k, τ)

]

−
[

ζ∗a(k, τ)ca(k, τ)+ c
∗
a(k, τ)ζa(k, τ)

+ ζ
∗
a(k, τ)ca(k, τ)+ c

∗
a(k, τ)ζa(k, τ)

]

}

. (108)

Here it is noted that all the terms related to the quantities
c∗a and ca are opposite in sign to the terms related to the c

∗
a

and ca and, correspondingly, the definitions of the integra-
tion measures for these quantities, as shown in (107), are
different from each other in the order of the differentials.
The generating functionals in (97), (101) and (105) are

all of Gaussian type; therefore, they can exactly be calcu-
lated by the stationary-phase method. First, we calculate
the functional integral Z0g [ξ]. According to the stationary-
phase method, the functional Z0g [ξ] can be represented in
the form

Z0g [ξ] =

∫

D(a∗a)

× exp

{

−

∫

d3k
[

a∗λ(k)aλ(k)+ I
0
g (a

∗
λ, aλ; ξ

∗
λ, ξλ)

]

}

,

(109)

where I0g (a
∗
λ, aλ; ξ

∗
λ, ξλ) is given by the stationary condition

δIg(a
∗
λ, aλ; ξ

∗
λ, ξλ) = 0. By this condition and the boundary

condition [20–22],

a∗λ(k, β) = a
∗
λ(k), aλ(k, 0) = aλ(k), (110)

one may derive from (98) or (100) the following inhomoge-
neous equations of motion [23–26]:

ȧλ(k, τ)+ω(k)aλ(k, τ) = ξλ(k, τ),

ȧ∗λ(k, τ)−ω(k)a
∗
λ(k, τ) =−ξ

∗
λ(k, τ). (111)

In accordance with the general method of solving such
a kind of equations, one may first solve the homogeneous
linear equations as written in (33). Based on the solu-
tions shown in (34) and the boundary condition denoted in
(110), one may assume [23–26]

aλ(k, τ) = [aλ(k)+uλ(k, τ)]e
−ω(k)τ ,

a∗λ(k, τ) =
[

a∗λ(k)+u
∗
λ(k, τ)

]

eω(k)(τ−β) , (112)
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where the unknown functions uλ(k, τ) and u
∗
λ(k, τ) are re-

quired to satisfy the boundary conditions [23–26]:

uλ(k, 0) = uλ(k, β) = u
∗
λ(k, 0) = u

∗
λ(k, β) = 0.

(113)

Inserting (112) into (111), we find

u̇λ(τ) = ξλ(k, τ)e
ω(k)τ .

u̇∗λ(τ) =−ξ
∗
λ(k, τ)e

ω(k)(β−τ). (114)

Integrating these two equations and applying the bound-
ary conditions in (113), one can get

uλ(k, τ) =

∫ τ

0

dτ ′eω(k)τ
′
ξλ(k, τ

′),

u∗λ(k, τ) =−

∫ τ

β

dτ ′eω(k)(β−τ
′)ξ∗λ(k, τ

′). (115)

Substitution of these solutions in (112) yields [23–26]

aλ(k, τ) = aλ(k)e
−ω(k)τ +

∫ τ

0

dτ ′e−ω(k)(τ−τ
′)ξλ(k, τ

′) ,

a∗λ(k, τ) = a
∗
λ(k)e

ω(k)(τ−β)+

∫ β

τ

dτ ′eω(k)(τ−τ
′)ξ∗λ(k, τ

′) .

(116)

When (116) is inserted into (98) or (100), one may obtain
the I0g (a

∗
λ, aλ; ξ

∗
λ, ξλ) which leads to another expression of

(109) like this

Z0g [ξ]

=

∫

D(a∗a) exp

{

−

∫

d3k
[

a∗λ(k)aλ(k)(1− e
−βω(k))

−a∗λ(k)e
−βω(k)

∫ β

0

dτeω(k)τξλ(k, τ)

−

∫ β

0

dτe−ω(k)τξ∗λ(k, τ)aλ(k)
]

+

∫ β

0

dτ1

∫ β

0

dτ2

×

∫

d3kξ∗λ(k, τ1)θ(τ1− τ2)e
−ω(k)(τ1−τ2)ξλ(k, τ2)

}

.

(117)

When we set

λ= 1− e−βω(k),

b= e−βω(k)
∫ β

0

dτeω(k)τξλ(k, τ) ,

f(a) =

∫ β

0

dτe−ω(k)τξ∗λ(k, τ)aλ(k) , (118)

by employing the formula denoted in (37), the integral over
a∗λ(k) and aλ(k) in (117) can easily be calculated. The re-
sult is

Z0g [ξ] = Z
0
g exp

{

−

∫ β

0

dτ1

∫ β

0

dτ2

×

∫

d3kξλ∗a (k, τ1)∆
aa′

λλ′(k, τ1− τ2)ξ
λ′

a′ (k, τ2)

}

,

(119)

where

Z0g =
∏

kλa

[

1− e−βω(k)
]−1
=
∏

ka

[

1− e−βω(k)
]−4

(120)

is precisely the partition function contributed from the free
gluons [21–24, 29] and

∆aa
′

λλ′(k, τ1− τ2) = gλλ′δ
aa′∆g(k, τ1− τ2) , (121)

where

∆g(k, τ1− τ2) = θ(τ1− τ2)−
(

1− eβω(k)
)−1
e−ω(k)(τ1−τ2)

(122)

is the free gluon propagator given in the Feynman gauge
and in the Minkowski metric (note that in Euclidean met-
ric, gλλ′ →−δλλ′). In (119), the color index a has been
explicitly written out and the λ now merely designates the
polarization index. In the other expressions, we still use λ
to mark the indices of both color and polarization for sim-
plicity. When we interchange the integration variables τ1
and τ2 andmake a transformationk→−k in (119), by con-
sidering the relation

ξ∗λ(k, τ) = ξλ(−k, τ) , (123)

which will be interpreted in the appendix, one may find
that the propagator in (122) can be represented in the form

∆g(k, τ1− τ2) =
1

2

[

nb(k)e
−ω(k)|τ1−τ2|−nb(k)e

ω(k)|τ1−τ2|
]

,

(124)

where

nb(k) =
(

1− e−βε(k)
)−1
, nb(k) =

(

1− eβε(k)
)−1

(125)

are just the boson distribution functions [20–23, 29].
Let us turn to the calculation of the functional integral

in (101). Based on the stationary-phase method, we can
write

Z0q [η] =

∫

D(b∗bd∗d)

× exp

{

−

∫

d3k
[

b∗s(k)bs(k)+d
∗
s(k)ds(k)

]

}

× exp
{

I0q
(

b∗s, bs, d
∗
s, ds; η

∗
s , ηs, η

∗
s, ηs

)}

, (126)

where I0q (b
∗
s, bs, d

∗
s , ds; η

∗
s , ηs, η

∗
s, ηs) will be obtained from

(102) or (104) by the stationary condition δIq(b
∗
s, bs, d

∗
s , ds;
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η∗s , ηs, η
∗
s , ηs) = 0. From this condition and the boundary

conditions [21–26]

b∗s(k, β) =−b
∗
s(k), bs(k, 0) = bs(k) ,

d∗s(k, β) =−d
∗
s(k), ds(k, 0) = ds(k) , (127)

one may deduce from (102) or (104) the following
equations [23–26]:

ḃs(k, τ)+ ε(k)bs(k, τ) = ηs(k, τ) ,

ḃ∗s(k, τ)− ε(k)b
∗
s(k, τ) =−η

∗
s(k, τ) ,

ḋs(k, τ)+ ε(k)ds(k, τ) = ηs(k, τ) ,

ḋ∗s(k, τ)− ε(k)d
∗
s(k, τ) =−η

∗
s(k, τ) . (128)

Following the procedure described in (111)–(116), the solu-
tions to the above equations, which satisfies the boundary
conditions in (127) and the conditions like those in (113),
can be found to be [23–26]

bs(k, τ) = bs(k)e
−ε(k)τ +

∫ τ

0

dτ ′e−ε(k)(τ−τ
′)ηs(k, τ

′) ,

b∗s(k, τ) =−b
∗
s(k)e

ε(k)(τ−β)+

∫ β

τ

dτ ′eε(k)(τ−τ
′)η∗s(k, τ

′) ,

ds(k, τ) = ds(k)e
−ε(k)τ +

∫ τ

0

dτ ′e−ε(k)(τ−τ
′)ηs(k, τ

′) ,

d∗s(k, τ) =−d
∗
s(k)e

ε(k)(τ−β)+

∫ β

τ

dτ ′eε(k)(τ−τ
′)η∗s(k, τ

′) .

(129)

Substituting the above solutions into (102) or (104), we
find

I0q
(

b∗s, bs, d
∗
s, ds; η

∗
s , ηs, η

∗
s , ηs

)

=

∫

d3k
{

− e−βε(k)
[

b∗s(k)bs(k)+d
∗
s(k)ds(k)

]

+

∫ β

0

dτe−ε(k)τ
[

η∗s (k, τ)bs(k)+η
∗
s(k, τ)ds(k)

]

− e−βε(k)
∫ β

0

dτeε(k)τ
[

b∗s(k)ηs(k, τ)+d
∗
s(k)ηs(k, τ)

]

}

+B
[

η∗s , ηs, η
∗
s, ηs

]

, (130)

where

B
[

η∗s , ηs, η
∗
s, ηs

]

=
1

2

∫ β

0

dτ1

∫ β

0

dτ2

∫

d3k
{

θ(τ1− τ2)e
−ε(k)(τ1−τ2)

×
[

η∗s (k, τ1)ηs(k, τ2)+η
∗
s(k, τ1)ηs(k, τ2)

]

+ θ(τ2− τ1)e
−ε(k)(τ2−τ1)

×
[

η∗s (k, τ2)ηs(k, τ1)+η
∗
s(k, τ2)ηs(k, τ1)

]

}

. (131)

On inserting (130) into (126), we have

Z0q [η] =A
[

η∗s , ηs, η
∗
s , ηs

]

eB
[

η∗s ,ηs,η
∗
s ,ηs

]

, (132)

where

A
[

η∗s , ηs, η
∗
s, ηs

]

=

∫

D(b∗b) exp

{

−

∫

d3k
[

b∗s(k)bs(k)(1+e
−βε(k))

+e−βε(k)b∗s(k)

∫ β

0

dτeε(k)τηs(k, τ)

−

∫ β

0

dτe−ε(k)τη∗s(k, τ)bs(k)
]

}

×

∫

D(d∗d) exp

{

−

∫

d3k
[

d∗s(k)ds(k)(1+e
−βε(k))

+e−βε(k)d∗s(k)

∫ β

0

dτeε(k)τηs(k, τ)

−

∫ β

0

dτe−ε(k)τη∗s(k, τ)ds(k)
]

}

, (133)

where the fact that the two integrals over {b∗, b} and
{d∗, d} commute with each other has been noted. Obvi-
ously, each of the above integrals can easily be calculated
by applying the integration formulas shown in (39). The
result is

A
[

η∗s , ηs, η
∗
s, ηs

]

= Z0q exp

{

−
1

2

∫ β

0

dτ1

∫ β

0

dτ2

∫

d3k(1+eβε(k))−1

×
{

e−ε(k)(τ1−τ2)
[

η∗s(k, τ1)ηs(k, τ2)+η
∗
s(k, τ1)ηs(k, τ2)

]

+e−ε(k)(τ2−τ1)

×
[

η∗s (k, τ2)ηs(k, τ1)+η
∗
s(k, τ2)ηs(k, τ1)

]

}

}

, (134)

where

Z0q =
∏

ks

[

1+e−βε(k)
]2

(135)

which just is the partition function contributed from free
quarks and antiquarks [21–23, 29]. It is noted that the two
terms in the exponent of (134) are equal to one another
as seen from the interchange of the integration variables τ1
and τ2. After (131) and (134) are substituted in (132), we
get

Z0q [η] = Z
0
q exp

{

∫ β

0

dτ1

∫ β

0

dτ2

∫

d3k

×

{

[

θ(τ1− τ2)− (1+e
βε(k))−1

]

e−ε(k)(τ1−τ2)

×
[

η∗s (k, τ1)ηs(k, τ2)+η
∗
s(k, τ1)ηs(k, τ2)

]

+
[

θ(τ2− τ1)− (1+e
βε(k))−1

]

e−ε(k)(τ2−τ1)

×
[

η∗s (k, τ2)ηs(k, τ1)+η
∗
s(k, τ2)ηs(k, τ1)

]

}

}

.

(136)
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When we interchange the variables τ1 and τ2 and set k→
−k in the second term of the above integrals and notice the
relation

η∗s(k, τ2)ηs(k, τ1) = η
∗
s(−k, τ1)ηs(−k, τ2) , (137)

which will be proved in the appendix, the functional Z0q [η]
will eventually be represented as

Z0q [η] = Z
0
q exp

{

∫ β

0

dτ1

∫ β

0

dτ2

∫

d3k

×
[

η∗s(k, τ1)∆
ss′

q (k, τ1− τ2)ηs′(k, τ2)

+η∗s(k, τ1)∆
ss′

q (k, τ1− τ2)ηs′(k, τ2)
]

}

,

(138)

where

∆ss
′

q (k, τ1− τ2) = δ
ss′∆q(k, τ1− τ2) ; (139)

in which

∆q(k, τ1− τ2) =
1

2

[

nf (k)e
−ε(k)|τ1−τ2|−nf(k)e

ε(k)|τ1−τ2|
]

(140)

is the free quark (antiquark) propagator. In the above,

nf (k) =
(

1+e−βε(k)
)−1
, nf (k) =

(

1+eβε(k)
)−1

(141)

are the fermion distribution functions [21–23, 29].
Finally, let us calculate the generating functional Z0c [ζ].

From the stationary condition δIc(c
∗
a, ca, c

∗
a, ca; ζ

∗
a , ζa,

ζ
∗
a, ζa) = 0 and the boundary conditions

c∗a(k, β) = c
∗
a(k) , c

∗
a(k, β) = c

∗
a(k) ,

ca(k, 0) = ca(k) , ca(k, 0) = ca(k) , (142)

which are the same as those for scalar fields and different
from fermion fields [21], it is easy to derive from (106) or
(108) the following equations of motion:

ċa(k, τ)+ω(k)ca(k, τ) =−ζa(k, τ),

ċ∗a(k, τ)−ω(k)c
∗
a(k, τ) = ζ

∗
a(k, τ),

ca (k, τ)+ω(k)ca(k, τ) = ζa(k, τ),

c∗a (k, τ)−ω(k)c
∗
a(k, τ) =−ζ

∗
a(k, τ). (143)

By the same procedure as stated in (111)–(116), the solu-
tions to the above equations can be found to be

ca(k, τ) = ca(k)e
−ω(k)τ −

∫ τ

0

dτ ′e−ω(k)(τ−τ
′)ζa(k, τ

′) ,

c∗a(k, τ) = c
∗
a(k)e

ω(k)(τ−β)−

∫ β

τ

dτ ′eω(k)(τ−τ
′)ζ∗a(k, τ

′) ,

ca(k, τ) = ca(k)e
−ω(k)τ +

∫ τ

0

dτ ′e−ω(k)(τ−τ
′)ζa(k, τ

′) ,

c∗a(k, τ) = c
∗
a(k)e

ω(k)(τ−β)+

∫ β

τ

dτ ′eω(k)(τ−τ
′)ζ
∗
a(k, τ

′) .

(144)

Upon substituting the above solutions into (106) or (108),
we find

I0c

(

c∗a, ca, c
∗
a, ca; ζ

∗
a , ζa, ζ

∗
a, ζa

)

=

∫

d3k

{

e−βω(k)
[

c∗a(k)ca(k)− c
∗
a(k)ca(k)

]

+e−βω(k)
∫ β

0

dτeω(k)τ
[

c∗a(k)ζa(k, τ)+ c
∗
a(k)ζa(k, τ)

]

−

∫ β

0

dτe−ω(k)τ
[

ζ∗a(k, τ)ca(k)+ ζ
∗
a(k, τ)ca(k)

]

}

−

∫ β

0

dτ1

∫ β

0

dτ2

∫

d3kθ(τ1− τ2)e
−ω(k)(τ1−τ2)

×
[

ζ∗a(k, τ1)ζa(k, τ2)− ζ
∗
a(k, τ1)ζa(k, τ2)

]

. (145)

On inserting the above expression into the following inte-
gral given by the stationary-phase method:

Z0c [ζ] =

∫

D(c∗ccc∗)

× exp

{

−

∫

d3k
[

c∗a(k)ca(k)− c
∗
a(k)ca(k)

]

+ I0c

(

c∗a, ca, c
∗
a, ca; ζ

∗
a , ζa, ζ

∗
a, ζa

)

}

, (146)

and applying the integration formulas in (39), one can get

Z0c [ζ] = Z
0
c exp

{

∫ β

0

dτ1

∫ β

0

dτ2

∫

d3k

×
[

θ(τ1− τ2)− (1− e
βω(k))−1

]

e−ω(k)(τ1−τ2)

×
[

ζ
∗
a(k, τ1)ζa(k, τ2)− ζ

∗
a(k, τ1)ζa(k, τ2)

]

}

,

(147)

where

Z0c ==
∏

ka

[

1− e−βω(k)
]2

(148)

is just the partition function arising from the free ghost
particles which plays the role of cancelling out the un-
physical contribution contained in (120). If we change the
integration variables in (147) and consider the relations

ζ∗a(k, τ) =−ζa(−k, τ), ζa(k, τ) =−ζ
∗
a(−k, τ) ,

(149)
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which will be interpreted in the appendix, (147) may be
recast in the form

Z0c [ζ] = Z
0
c exp

{

∫ β

0

dτ1

∫ β

0

dτ2

∫

d3k

×
[

ζ
∗
a(k, τ1)∆

aa′

c (k, τ1− τ2)ζa′(k, τ2)

− ζ∗a(k, τ1)∆
aa′

c (k, τ1− τ2)ζa′(k, τ2)
]

}

,

(150)

where

∆aa
′

c (k, τ1− τ2) = δ
aa′∆g(k, τ1− τ2) ; (151)

here ∆g(k, τ1− τ2) was written in (124).
Up to the present, the perturbative expansion of the

thermal QCD generating functional in the coherent-state
representation has exactly been given by the combination
of (95), (96), (119), (138) and (150). In the derivation of
the perturbation expansion, as one has seen, to obtain the
final expressions of the propagators shown in (124), (140)
and (151), it is necessary to use the functional proper-
ties and relations for the external sources as denoted in
(123), (137) and (149). As a result of the derivation of
the generating functional, the partition function for the
free system has simultaneously been given by the combi-
nation of (120), (135) and (148). The partition function
for the interacting system can be calculated in the way as
shown in (45). Here it should be noted that the differential
δ/δj(τ) in (95) represent the collection of the differen-
tials δ/δξa∗λ (k, τ), δ/δξ

a
λ(k, τ), −δ/δηs(k, τ), δ/δη

∗
s(k, τ),

−δ/δηs(k, τ), δ/δη
∗
s(k, τ), −δ/δζa(k, τ), δ/δζ

∗
a(k, τ),

−δ/δζa(k, τ) and δ/δζ
∗
a(k, τ). Ordinarily, the generating

functional of thermal QCD represented in the position
space is used in the literature. In the appendix, it will
be shown that this generating functional can readily be
derived from the generating functional described in this
section.

5 Relativistic equation for qq bound states

With the generating functional given in the preceding sec-
tion, we are ready to derive the relativistic equation for qq
bound states at finite temperature. It is well-known that
a bound state exists in the space-like Minkowski space in
which there always is an equal-time Lorentz frame. Since
in the equal-time frame, the relativistic equation is reduced
to a three-dimensional one without loss of any rigor, in
this section we only pay attention to the three-dimensional
equation which may be derived from the equations of mo-
tion satisfied by the following qq two-“time” (temperature)
four-point Green function [15–17]:

G(αβ; γδ; τ1− τ2)

= Tr
{

eβ(Ω−
̂K)T

{

N
[

̂bα(τ1)̂b
+
β (τ1)

]

N
[

̂bγ(τ2)̂b
+
δ (τ2)

]}}

≡
〈

T
{

N
[

̂bα(τ1)̂b
+
β (τ1)

]

N
[

̂bγ(τ2)̂b
+
δ (τ2)

]}〉

β
, (152)

where the symbol 〈〉β represents the statistical average and
N symbolizes the normal product whose definition can be
given from the corresponding definition at zero tempera-
ture by replacing the vacuum average with the statistical
average [17]

N
[

̂bα(τ1)̂b
+
β (τ2)

]

= T
[

̂bα(τ1)̂b
+
β (τ2)

]

−Sαβ(τ1− τ2) ,

(153)

where

Sαβ(τ1− τ2) =
〈

T
[

̂bα(τ1)̂b
+
β (τ2)

]〉

β
(154)

is the quark or antiquark thermal propagator. The normal
product in (152) plays the role of excluding the contraction
between the quark and the antiquark operators from the
Green function when the quark and antiquark are of the
same flavor. Physically, this avoids the qq annihilation that
would break stability of a bound state. Substituting (153)
in (152), we have

G(αβ; γδ; τ1− τ2) =G(αβ; γδ; τ1− τ2)−SαβSγδ ,
(155)

where

G(αβ; γδ; τ1− τ2) =
〈

T
{

̂bα(τ1)̂b
+
β (τ1)

̂bγ(τ2)̂b
+
δ (τ2)

}〉

β

(156)

is the ordinary Green function, and Sαβ and Sγδ are
the equal-time quark (antiquark) propagators. Obviously,
in order to derive the equation of motion satisfied by
the Green function G(αβ; γδ; τ1− τ2), we need first to
derive the equation of motion for the Green function
G(αβ; γδ; τ1− τ2).
Let us start with the generating functional in (91). As

shown in Sect. 4, by partial integration of the second term
on the right hand side of (89), the generating functional
may be written in the form

Z[j] =

∫

D(q∗ · q)e−q
∗·q

∫

D(q∗ · q)

× exp

{

q∗(β) · q(β)−SE+

∫ β

0

dτj∗(τ) · q(τ)

}

,

(157)

where

SE =

∫ β

0

dτ
{
∑

α

q∗α(τ)◦ q̇α(τ)+H(τ)
}

; (158)

here H(τ) was given in (78) and (79). First, we derive an
equation of motion describing the variation of the qq four-
point Green function with the “time” variable τ1. For this
purpose, let us differentiate the generating functional in
(157) with respect to b∗α(τ1). Considering that the gener-
ating functional is independent of b∗α(τ1) and noticing the
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expressions given in (158), (78), (79) and (93), one may ob-
tain

δZ[j]

δb∗α(τ1)
=

∫

D(q∗q)e−q
∗q

∫

D(q∗q)
[

− ḃα(τ1)− εαθαbα(τ1)

−
∑

ρλ

Aαρλbρ(τ1)aλ(τ1)+ θαηα(τ1)
]

× exp

{

q∗(β)q(β)−SE−

∫ β

0

dτj∗(τ)q(τ)

}

= 0.

(159)

When the bα(τ1) and aλ(τ1) in the above are replaced by
the functional derivatives θαδ/δη

∗
α(τ1) and δ/δj

∗
λ(τ1) re-

spectively and multiplying both sides of (159) with θα, the
above equation can be written as

{

d

dτ1

δ

δη∗α(τ1)
+ θαεα

δ

δη∗α(τ1)

+
∑

ρλ

θαθρA(αρλ)
δ2

δη∗ρ(τ1)δj
∗
λ(τ1)

−ηα(τ1)

}

Z[j] = 0.

(160)

Then we differentiate the above equation with respect to
the sources ηβ((τ1), giving

{

(

d

dτ1

δ

δη∗α(τ1)

)

δ

δηβ(τ1)
+ θαεα

δ2

δη∗α(τ1)δηβ(τ1)

+
∑

ρλ

θαθρA(αρλ)
δ3

δη∗ρ(τ1)δηβ(τ1)δj
∗
λ(τ1)

+ δαβ−ηα(τ1)
δ

δηβ(τ1)

}

Z[j] = 0. (161)

Furthermore, successive differentiations of (161) with re-
spect sources η∗γ(τ2) and ηδ(τ2) yield

{

(

d

dτ1

δ

δη∗α(τ1)

)

δ3

δηβ(τ1)δη∗γ(τ2)δηδ(τ2)

+ θαεα
δ4

δη∗α(τ1)δηβ(τ1)δη
∗
γ(τ2)δηδ(τ2)

+
∑

λσ

θαθρA(αρλ)
δ5

δη∗ρ(τ1)δηβ(τ1)δη
∗
γ(τ2)δηδ(τ2)δj

∗
λ(τ1)

+ δαβ
δ2

δη∗γ(τ2)δηδ(τ2)
− δαδδ(τ1− τ2)

δ2

δη∗γ(τ2)δηβ(τ1)

−ηα(τ1)
δ3

δηβ(τ1)δη∗γ(τ2)δηδ(τ2)

}

Z[j] = 0. (162)

Similarly, when differentiating (157) with respect bβ(τ1),
one may obtain

{

d

dτ1

δ

δηβ(τ1)
− θβεβ

δ

δηβ(τ1)

−
∑

σλ

θσθβA(σβλ)
δ2

δησ(τ1)δj∗λ(τ1)
−η∗β(τ1)

}

Z[j] = 0,

(163)

Subsequently, on differentiating the above equation with
respect to η∗α(τ1), we get

{

δ

δη∗α(τ1)

(

d

dτ1

δ

δηβ((τ1)

)

− θβεβ
δ2

δη∗α(τ1)δηβ(τ1)

−
∑

σλ

θβθσA(σβλ)
δ3

δη∗α(τ1)δησ(τ1)δj
∗
λ(τ1)

− δαβ+η
∗
β(τ1)

δ

δη∗α(τ1)

}

Z[j] = 0. (164)

Finally, successive differentiations of the above equation
with respect to the sources η∗γ(τ2) and ηδ(τ2) give rise to

{

δ

δη∗α(τ1)

(

d

dτ1

δ

δηβ(τ1)

)

δ2

δη∗γ(τ2)δηδ(τ2)

− θβεβ
δ4

δη∗α(τ1)δηβ(τ1)δη
∗
γ(τ2)δηδ(τ2)

−
∑

λσ

θβθσA(σβλ)
δ5

δη∗α(τ1)δησ(τ1)δη
∗
γ(τ2)δηδ(τ2)δj

∗
λ(τ1)

− δαβ
δ2

δη∗γ(τ2)δηδ(τ2)
+ δβγδ(τ1− τ2)

δ2

δη∗α(τ1)δηδ(τ2)

+η∗β(τ1)
δ3

δη∗α(τ1)δη
∗
γ(τ2)δηδ(τ2)

}

Z[j] = 0. (165)

Adding (161) to (164), then multiplying both sides of
the equation thus obtained with −θαθβ and finally setting
the external sources η∗α = ηβ = 0, but keeping the gluon
source jλ 	= 0, we get

(

d

dτ1
+ θαεα− θβεβ

)

S
jλ
αβ

+
∑

ρσλ

[A(αρλ)δβσ−A(σβλ)δαρ]
δ

δj∗λ(τ1)
Sjλρσ = 0 ,

(166)

where

S
jλ
αβ =−

1

Z
θαθβ

δ2Z[j]

δη∗α(τ1)δηβ(τ1)

∣

∣

∣

η∗α=ηβ=0
(167)
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is the quark (antiquark) equal-time propagator in the pres-
ence of source jλ. If we define

H(αβ; ρσ; τ1)
jλ =

(

d

dτ1
+ θαεα− θβεβ

)

δαρδβσ

+
∑

λ

f(αβ; ρσλ)
δ

δj∗λ(τ1)
, (168)

where

f(αβ; ρσλ) =A(αρλ)δβσ−A(σβλ)δαρ , (169)

(166) can simply be represented as

∑

ρσ

H(αβ; ρσ; τ1)
jλSjλρσ = 0 . (170)

When summing up both equations in (162) and (165),
then multiplying the equation thus obtained with θαθβθγθδ
and finally setting all the sources but jλ to be zero, one may
get
(

d

dτ1
+ θαεα− θβεβ

)

G(αβ; γδ; τ1− τ2)
jλ

+
∑

ρσλ

f(αβ; ρσλ)
δ

δj∗λ(τ1)
G(ρσ; γδ; τ1− τ2)

jλ

= δ(τ1− τ2)
[

δβγSαδ(τ1− τ2)
jλ − δαδSγβ(τ2− τ1)

jλ
]

,

(171)

where

G(αβ; γδ; τ1− τ2)
jλ

=
1

Z
θαθβθγθδ

δ4Z[j]

δη∗α(τ1)δηβ(τ1)δη
∗
γ(τ2)δηδ(τ2)

∣

∣

∣

η∗=η=0

(172)

and

Sαβ(τ1− τ2)
jλ =−

1

Z
θαθβ

δ2Z[j]

δη∗α(τ1)δηβ(τ2)

∣

∣

∣

η∗=η=0

(173)

are respectively the qq two-“time” four-point thermal
Green function and the quark or antiquark thermal prop-
agator in the presence of the source jλ. When the source
jλ is turned off, (172) and (173) will respectively go over
to the Green function in (156) and the propagator in (154).
It is noted that due to the restriction of the delta function,
the propagators in (171) are actually “time”-independent.
With the definition in (168), (171) may be represented as

∑

ρσ

H(αβ; ρσ; τ1)
jλG(ρσ; γδ; τ1− τ2)

jλ

=−δ(τ1− τ2)S(αβ; γδ)
jλ , (174)

where

S(αβ; γδ)jλ = δαδS
jλ
γβ− δβγS

jλ
αδ . (175)

Acting on both sides of (155) with the operator H(αβ;
ρσ; τ1)

jλ and using the equations in (170) and (174), we
find

∑

ρσ

H(αβ; ρσ; τ1)
jλG(ρσ; γδ; τ1− τ2)

jλ

=
∑

ρσ

H(αβ; ρσ; τ1)
jλG(ρσ; γδ; τ1− τ2)

jλ

=−δ(τ1− τ2)S(αβ; γδ)
jλ . (176)

This indicates that the equation of motion satisfied by the
Green function G(αβ; γδ; τ1− τ2) formally is the same as
the one shown in (171). Therefore, in the case that the
source jλ vanishes, we can write

(

d

dτ1
+ θαεα− θβεβ

)

G(αβ; γδ; τ1− τ2)

=−δ(τ1− τ2)S(αβ; γδ)

−
∑

ρσλ

f(αβ; ρσλ)G(ρσλ; γδ; τ1− τ2) , (177)

where

G(ρσλ; γδ; τ1− τ2) =
δ

δj∗λ(τ1)
G(ρσ; γδ; τ1− τ2)

jλ

∣

∣

∣

jλ=0

=
〈

T
{

N
[

̂bρ(τ1)̂b
+
σ (τ1)âλ(τ1)

]

N
[

̂bγ(τ2)̂b
+
δ (τ2)

]}〉

β

(178)

and

S(αβ; γδ) = δαδSγβ− δβγSαδ =−

〈

[

̂bα̂b
+
β ,
̂bγ̂b

+
δ

]

−

〉

β

.

(179)

It is noted here that similar to the definition in (153), the
normal product N [̂bρ(τ1)̂b

+
σ (τ1)âλ(τ1)] in (178) is defined

as

N
[

̂bρ(τ1)̂b
+
σ (τ1)âλ(τ1)

]

= T
[

̂bρ(τ1)̂b
+
σ (τ1)âλ(τ1)

]

−Λ(ρσλ),

(180)

where

Λ(ρσλ) =
〈

T
[

̂bρ(τ1)̂b
+
σ (τ1)âλ(τ1)

]〉

β
. (181)

Substituting (153) and (180) into (178), we have

G(ρσλ; γδ; τ1− τ2) =G(ρσλ; γδ; τ1− τ2)−Λ(ρσλ)Sγδ ,
(182)

where

G(ρσλ; γδ; τ1− τ2)

=
〈

T
{

̂bρ(τ1)̂b
+
σ (τ1)âλ(τ1)

̂bγ(τ2)̂b
+
δ (τ2)

}〉

β
(183)

is the ordinary five-point thermal Green function including
a gluon operator in it.
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By the argument as mentioned in the appendix (see
(A.9) or (A.18)), it is easy to prove that the Green func-
tions G(αβ; γδ; τ1− τ2) and G(ρσλ; γδ; τ1− τ2) are peri-
odic. Therefore, we have the following Fourier expansions:

G(αβ; γδ; τ) =
1

β

∑

n

G(αβ; γδ;ωn)e
−iωnτ ,

G(ρσλ; γδ; τ) =
1

β

∑

n

G(ρσλ; γδ;ωn)e
−iωnτ , (184)

where τ = τ1− τ2 and ωn =
2πn
β
. Upon inserting (184) into

(177) and performing the integration 12
∫ β

−β dτe
iωnτ , we ar-

rive at

(iωn− θαεα+ θβεβ)G(αβ; γδ;ωn)

=−S(αβ; γδ)+
∑

ρσλ

f(αβ; ρσλ)G(ρσλ; γδ;ωn) .

(185)

It is well-known that the Green function G(ρσλ; γδ;ωn)
is B-S (two-particle) reducible [15–17]. Therefore, we can
write

∑

λτρ

f(αβ; ρσλ)G(ρσλ; γδ;ωn)

=
∑

µν

K(αβ;µν;ωn)G(µν; γδ;ωn) , (186)

whereK(αβ;µν;ωn) is called the interaction kernel. Thus,
(185) can be written in a closed form

(iωn− θαεα+ θβεβ)G(αβ; γδ;ωn)

=−S(αβ; γδ)+
∑

µν

K(αβ;µν;ωn)G(µν; γδ;ωn) .

(187)

Now, let us turn to the equation satisfied by qq bound
states. This equation can be derived from (187) with the
aid of the following Lehmann representation of the four-
point Green function, which may be derived by expanding
the time-ordered product in (152) and then inserting the
complete set of qq bound states into (152) [15–17,31],

G(αβ; γδ;ωl)

=
1

2
eβΩ

∑

mn

∆mn

{

χnm(αβ)χmn(γδ)

iωl−Enm
−
χnm(γδ)χmn(αβ)

iωl+Enm

}

,

(188)

where

χnm(αβ) =
〈

m
∣

∣

∣N
[

̂bα̂b
+
β

]∣

∣

∣n
〉

, (189)

which is the transition amplitude from the state with en-
ergy En to the state with energy Em, and where

∆nm = e
−βEn− e−βEm . (190)

Upon substituting (188) into (187) and then taking the
limit: limiωl→Enm(iωl−Enm), we get the following equa-
tion satisfied by the transition amplitude:

(Enm− θαεα+ θβεβ)χnm(αβ)

=
∑

γδ

K(αβ; γδ;Enm)χnm(γδ) , (191)

where the fact that the function S(αβ; γδ) has no bound
state poles has been considered. If we take |m〉 to be
the vacuum state | 0〉 and set E = En0 and χn(αβ) =
〈

0
∣

∣

∣N [̂bα̂b
+
β ]
∣

∣

∣n
〉

, we can write from the above equation

that

(E− θαεα+ θβεβ)χn(αβ) =
∑

γδ

K(αβ; γδ;E)χn(γδ) ,

(192)

where the subscript n in En has been suppressed. This just
is the equation satisfied by the qq bound states at finite
temperature.
Since the index α contains θα = ±, (192) actually is

a set of coupled equations for the amplitudes χn(α
+β−),

χn(α
−β+), χn(α

+β+) and χn(α
−β−). Following the pro-

cedure described in [16] and [17], one may reduce the above
equation to an equivalent equation satisfied by the ampli-
tude of positive energy. We do not repeat the derivation
here. We only show the result, as follows:

[E− ε(kα)− ε(kβ)]ψ(αβ;E) =
∑

γδ

V (αβ; γδ;E)ψ(γδ;E) ,

(193)

where ψ(αβ;E) = χn(α
+β−) and V (αβ; γδ;E) is the in-

teraction Hamiltonian which can be expressed as

V (αβ; γδ;E) =
∑

n=0

V (n)(αβ; γδ;E) , (194)

in which

V (0)(αβ; γδ;E) =K++++(αβ; γδ;E), (195)

V (1)(αβ; γδ;E)

=
∑

ab�=++

∑

ρσ

K++ab(αβ; ρσ;E)Kab++(ρσ; γδ;E)

E−aε(kρ)− bε(kσ)
,

(196)

V (2)(αβ; γδ;E) =
∑

ab�=++

∑

cd �=++

∑

ρσ

∑

µν

×
K++ab(αβ; ρσ;E)Kabcd(ρσ;µν;E)Kcd++(µν; γδ;E)

(E−aε(kρ)− bε(kσ))(E− cε(kµ)−dε(kν))
;

· · · · · ·. (197)

here a, b=±, and

K++++(αβ; γδ;E) =K(α
+β−; γ+δ−;E) ,

K−−−−(αβ; γδ;E) =K(α
−β+; γ−δ+;E) ,

K+−+−(αβ; γδ;E) =K(α
+β+; γ+δ+;E) ,

K−+−+(αβ; γδ;E) =K(α
−β−; γ−δ−;E) . (198)
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6 Closed expression of the interaction kernel
in the equation for qq bound states

This section is devoted to deriving a closed expression
for the interaction kernel appearing in (192) and de-
fined in (186). For this derivation, we need equations of
motion which describe evolution of the Green functions
G(αβ; γδ; τ1− τ2) and G(αβσ; γδ; τ1− τ2) with time τ2.
Taking the derivatives of the generating functional in (157)
with respect to b∗γ(τ2) and bδ(τ2) respectively, by the same
procedure as described in the derivation of (160), one may
obtain

{

d

dτ2

δ

δη∗γ(τ2)
+ θγεγ

δ

δη∗γ(τ2)

+
∑

ρλ

θγθρA(γρλ)
δ2

δη∗ρ(τ2)δj
∗
λ(τ2)

−ηγ(τ2)

}

Z[j] = 0 .

(199)

and

{

d

dτ2

δ

δηδ(τ2)
− θδεδ

δ

δηδ(τ2)

−
∑

σλ

θδθσA(σδλ)
δ2

δησ(τ2)δj∗λ(τ2)
−η∗δ(τ2)

}

Z[j] = 0 .

(200)

Performing differentiations of (199) and (200) with re-
spect to the sources ηδ(τ2) and η

∗
γ(τ2) respectively, we

get

{

(

d

dτ2

δ

δη∗γ(τ2)

)

δ

δηδ(τ2)
+ θγεγ

δ2

δη∗γ(τ2)δηδ(τ2)

+
∑

ρλ

θγθρA(γρλ)
δ3

δη∗ρ(τ2)δηδ(τ2)δj
∗
λ(τ2)

+ δγδ−ηγ(τ2)
δ

δηδ(τ2)

}

Z[j] = 0 (201)

and

{

δ

δη∗γ(τ2)

(

d

dτ2

δ

δηδ(τ2)

)

− θδεδ
δ

δη∗γ(τ2)δηδ(τ2)

−
∑

σλ

θδθσA(σδλ)
δ3

δη∗γ(τ2)δησ(τ2)δj
∗
λ(τ2)

− δγδ+η
∗
δ(τ2)

δ

δη∗γ(τ2)

}

Z[j] = 0. (202)

Furthermore, by successively differentiating (201) and
(202) with respect to the sources η∗α(τ1) and ηβ(τ1), one

obtains

{

δ2

δη∗α(τ1)δηβ(τ1)

(

d

dτ2

δ

δη∗γ(τ2)

)

δ

δηδ(τ2)

+ θγεγ
δ4

δη∗α(τ1)δηβ(τ1)δη
∗
γ(τ2)δηδ(τ2)

+
∑

λσ

θγθλA(γρλ)
δ5

δη∗α(τ1)δηβ(τ1)δη
∗
ρ(τ2)δηδ(τ2)δj

∗
λ(τ2)

+ δγδ
δ2

δη∗α(τ2)δηβ(τ2)
− δβγδ(τ1− τ2)

δ2

δη∗α(τ1)δηδ(τ2)

−ηγ(τ2)
δ3

δη∗α(τ1)δηβ(τ1)δηδ(τ2)

}

Z[j] = 0 (203)

and

{

δ3

δη∗α(τ1)δηβ(τ1)δη
∗
γ(τ2)

(

d

dτ2

δ

δηδ(τ2)

)

− θδεδ
δ4

δη∗α(τ1)δηβ(τ1)δη
∗
γ(τ2)δηδ(τ2)

−
∑

σλ

θδθσA(σδλ)
δ5

δη∗α(τ1)δηβ(τ1)δη
∗
γ(τ2)δησ(τ2)δj

∗
λ(τ2)

− δγδ
δ2

δη∗α(τ2)δηβ(τ2)
+ δαδδ(τ1− τ2)

δ2

δη∗γ(τ2)δηβ(τ1)

+η∗δ(τ2)
δ3

δη∗α(τ1)δηβ(τ1)δη
∗
γ(τ2)

}

Z[j] = 0. (204)

Let us sum up (201) and (202) at first, then multiply
both sides of the equation thus obtained with −θγθδ and
finally set all the sources but the source jλ to vanish. By
these operations, we get

∑

ρσ

H(γδ; ρσ; τ2)
jλSjλρσ = 0 , (205)

where

H(γδ; ρσ; τ2)
jλ =

(

d

dτ2
+ θγεγ− θδεδ

)

δγρδδσ

−
∑

λ

f(ρσλ; γδ)
δ

δj∗λ(τ2)
(206)

in which

f(ρσλ; γδ) =A(σδλ)δγρ−A(γρλ))δδσ =−f(γδ; ρσλ)
(207)

and S
jλ
ρσ was defined in (167).

When we sum up (203) and (204), then multiply both
sides of the equation thus obtained with θαθβθγθδ and fi-
nally set all the sources but the source jλ to be zero, ac-
cording to the definitions in (172) and (173), it is found
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that
∑

ρσ

H(γδ; ρσ; τ2)
jλG(αβ; γδ; τ1− τ2)

jλ

= δ(τ1− τ2)
[

δαδSγβ(τ2− τ1)
jλ − δβγSαδ(τ1− τ2)

jλ
]

.

(208)

In order to derive the equation of motion satisfied by
the Green function G(λτσ; γδ; τ1− τ2) defined in (183), we
may take the derivative of (208) with respect to j∗λ(τ1). In
this way, we get
∑

ρσ

H(γδ; ρσ; τ2)
jλG(αβλ; γδ; τ1− τ2)

jλ

= δ(τ1− τ2)
[

δαδΛ(γβρ; τ2− τ1)
jλ − δβγΛ(αδρ; τ1− τ2)

jλ
]

,

(209)

where

Λ(γβρ; τ2− τ1)
jλ =

δ

δj∗λ(τ1)
Sγβ(τ2− τ1)

jλ , (210)

Λ(αδρ; τ1− τ2)
jλ =

δ

δj∗λ(τ1)
Sαδ(τ1− τ2)

jλ (211)

and

G(αβλ; γδ; τ1− τ2) =
δ

δj∗λ(τ1)
G(αβ; γδ; τ1− τ2)

jλ .

(212)

Acting on (155) and (182) with the operator
H(γδ; ρσ; τ2) and employing (205), we find

∑

ρσ

H(γδ; ρσ; τ2)
jλG(αβ; ρσ; τ1− τ2)

jλ

=
∑

ρσ

H(γδ; ρσ; τ2)
jλG(αβ; ρσ; τ1− τ2)

jλ (213)

and
∑

ρσ

H(γδ; ρσ; τ2)
jλG(αβλ; ρσ; τ1− τ2)

jλ

=
∑

ρσ

H(γδ; ρσ; τ2)
jλG(αβλ; ρσ; τ1− τ2)

jλ . (214)

The above two equalities further indicate that the equa-
tions of motion satisfied by the Green functions G(αβ; ρσ; τ1−
τ2)
jλ and G(αβλ; ρσ; τ1− τ2)jλ are formally the same as

those for the ordinary Green functions G(αβ; ρσ; τ1−
τ2)
jλ and G(αβλ; ρσ; τ1− τ2)jλ respectively. Upon insert-

ing (208) into (213) and (209) into (214) and turning off
the source jλ, noticing the definition in (206), we derive the
following equations:

(

d

dτ2
+ θγεγ− θδεδ

)

G(αβ; γδ; τ1− τ2)

= δ(τ1− τ2)[δαδSγβ(τ2− τ1)− δβγSαδ(τ1− τ2)]

+
∑

λτσ

G(αβ;λτσ; τ1− τ2)f(λτσ; γδ) (215)

and
(

d

dτ2
+ θγεγ− θδεδ

)

G(αβρ; γδ; τ1− τ2)

= δ(τ1− τ2) [δαδΛ(γβρ; τ2− τ1)− δβγΛ(αδρ; τ1− τ2)]

+
∑

λτσ

G(αβρ;λτσ; τ1− τ2)f(λτσ; γδ) , (216)

where some indices have been changed for convenience:

Λ(γβρ; τ2− τ1) =
〈

T
[

̂bγ(τ2)̂b
+
β (τ1)âρ(τ1)

]〉

β
,

Λ(αδρ; τ1− τ2) =
〈

T
[

̂bα(τ1)̂b
+
δ (τ2)âρ(τ1)

]〉

β
,

(217)

which are given by (210) and (211) on setting jλ = 0, and

G(λτρ; γδσ; τ1− τ2)

=
δ2

δj∗ρ(τ1)δj
∗
σ(τ2)

G(λτ ; γδ; τ1− τ2)
jλ

∣

∣

∣

jλ=0

=
〈

T
{

N
[

̂bλ(τ1)̂b
+
τ (τ1)âρ(τ1)

]

N
[

̂bγ(τ2)̂b
+
δ (τ2)âσ(τ2)

]}〉

β

(218)

is the six-point Green function including two gluon opera-
tors in it. According to the definition in (180), we have

G(λτρ; γδσ; τ1− τ2) =G(λτρ; γδσ; τ1− τ2)

−Λ(λτρ)Λ(γδσ) , (219)

where

G(λτρ; γδσ; τ1− τ2)

=
〈

T
[

̂bλ(τ1)̂b
+
τ (τ1)âρ(τ1)

̂bγ(τ2)̂b
+
δ (τ2)âσ(τ2)

]〉

β

(220)

is the ordinary six-point Green function. It should be noted
that due to the restriction of the delta function, the terms
in the brackets on the right hand sides of (215) and (216)
actually are “time”-independent.
It is easy to see that the Green functions G(αβ;λτσ; τ1−

τ2) and G(λτρ; γδσ; τ1 − τ2), as the Green functions
G(αβ; γδ; τ1− τ2) and G(αβρ; γδ; τ1 − τ2), are periodic.
Therefore, by the Fourier transformation, i.e. by the in-
tegration

∫ β

0 dτe
iωnτ , noticing d/dτ2 = −d/dτ , (215) and

(216) will be transformed to

(iωn+ θγεγ− θδεδ)G(αβ; γδ;ωn)

= S(αβ; γδ)+
∑

λτσ

G(αβ;λτσ;ωn)f(λτσ; γδ) ,

(221)

where S(αβ; γδ) was defined in (179) and

(iωn+ θγεγ− θδεδ)G(αβρ; γδ;ωn)

=R(αβρ; γδ)+
∑

λτσ

G(αβρ;λτσ;ωn)f(λτσ; γδ) ,

(222)
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where

R(αβρ; γδ) = δαδΛ(γβρ)− δβγΛ(αδρ)

=

〈

[

̂bα̂b
+
β ,
̂bγ̂b

+
δ

]

−
âρ

〉

β

, (223)

which is “time”-independent.
Now we are ready to derive the interaction kernel. Act-

ing on both sides of (186) with (iωn+ θγεγ − θδεδ) and
using (221) and (222), one gets

∑

µν

K(αβ;µν;ωn)S(µν; γδ)

=
∑

λτρ

f(αβ;λτρ)R(λτρ; γδ)

+
∑

λτρ

∑

ξησ

f(αβ;λτρ)G(λτρ; ξησ;ωn)f(ξησ; γδ)

−
∑

µν

∑

ξησ

K(αβ;µν;ωn)G(αβ; ξησ;ωn)f(λτσ; γδ) .

(224)

Operating on both sides of (186) with the inverse of
G(µν; γδ;ωn), we have

K(αβ; γδ;ωn)

=
∑

γδ

∑

λτσ

f(αβ;λτρ)G(λτρ;µν;ωn)G
−1(µν; γδ;ωn) .

(225)

Upon substituting (225) onto the right hand side of (224)
and acting on (224) with the inverse S−1(µν; γδ), we even-
tually arrive at

K(αβ; γδ;E)

=
∑

µν

⎧

⎨

⎩

∑

λτρ

f(αβ;λτρ)R(λτρ;µν)

+
∑

λτρ

∑

ξησ

f(αβ;λτρ)G(λτρ; ξησ;E)f(ξησ;µν)

−
∑

λτρ

∑

ξησ

∑

κς

∑

πθ

f(αβ;λτρ)G(λτρ;κς;E)

×G−1(κς;πθ;E)G(πθ; ξησ;E)f(ξησ;µν)
}

×S−1(µν; γδ) , (226)

where ωn has been replaced by E. This just is the wanted
closed expression of the interaction kernel appearing in
(192). In accordance with (186), the last term in (226) can
be written in the form

∑

ρσ

∑

ξη

∑

µν

K(αβ; ρσ;E)G(ρσ; ξη;E)

×K(ξη;µν;E)S−1(µν; γδ) (227)

which exhibits a typical B-S reducible structure [17].
Therefore, the last term in (226) plays the role of can-
celling the B-S reducible part contained in the other terms

in (226) to make the kernel to be B-S irreducible. If we
use the above expression in place of the last term in (226)
and acting on (226) with S(γδ;µν), we obtain from (226)
an integral equation satisfied by the kernel K(αβ; γδ;E).
Define

R(αβ; γδ) =
∑

λτρ

f(αβ;λτρ)R(λτρ; γδ) (228)

and

Q(αβ; γδ) =
∑

λτρ

∑

ξησ

f(αβ;λτρ)G(λτρ; ξησ;E)f(ξησ; γδ),

(229)

the integral equation can be written in the matrix form as
follows:

KS =R+Q−KGK. (230)

For comparison with the kernel in (226) and for conve-
nience of nonperturbative investigations, we would like to
show the corresponding closed expression given in the pos-
ition space without giving derivation. This kernel can be
obtained from the kernel in (226) by making use of the in-
verse of the Fourier transformations written in Sect. 3 or
derived from the generating functional represented in the
position space (see appendix ) by completely following the
procedure as described in this section. The kernel is repre-
sented as follows:

K(x1,x2;y1,y2;E)

=

∫

d3z1d
3z2{R(x1,x2; z1, z2)+Q(x1,x2; z1, z2;E)

−D(x1,x2; z1, z2;E)}S
−1(z1, z2;y1,y2) ; (231)

R(x1,x2; z1, z2),Q(x1,x2; z, z2;E) andD(x1,x2; z1, z2;E)
will now be described:

R(x1,x2; z1, z2) =
2
∑

i=1

Ωaµi R
(i)a
µ (x1,x2; z1, z2)

(232)

in which

Ωaµ1 = igγ
4
1γ
µ
1 T
a
1 , Ω

bν
2 = igγ

4
2γ
ν
2T
b

2 , (233)

with T a1 = λ
a/2 and T

b

2 =−λ
a∗/2 being the quark and an-

tiquark color matrices respectively and

R(i)aµ (x1,x2; z1, z2) = δ
3(x1−z1)γ

4
1Λ
ca
µ (xi | x2, z2)

+ δ3(x2−z2)γ
4
2Λ
a
µ(xi | x1, z1) ;

(234)

here Λaµ(xi | x1,y1) and Λ
ca
µ (xi | x2,y2) are defined as

Λaµ(xi | x1,y1) =
〈

T
[

Aaµ(xi, τ1)ψ(x1, τ1)ψ(y1, τ1)
]〉

β
,

Λcaµ (xi | x2,y2) =
〈

T
[

Aaµ(xi, τ1)ψ
c(x2, τ1)ψ

c
(y2, τ1)

]〉

β
,

(235)
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which are time-independent due to the translation-invari-
ance property of the Green functions. Also, we have

Q(x1,x2; z1, z2;E)

=
2
∑

i,j=1

Ωaµi G
ab
µν(xi, zj | x1,x2; z1, z2;E)Ω

bν

j ,

(236)

in which

Ω
aµ

1 = igγ
µ
1 γ
4
1T
a
1 , Ω

aµ

2 = igγ
µ
2 γ
4
2T
a

2, (237)

and Gabµν(xi, zj | x1,x2; z1, z2;E) is the Fourier transform of
the Green function defined by

Gabµν(xi, zj | x1,x2; z1, z2; τ1− τ2)

=

〈

T

{

N
[

Aaµ(xi, τ1)ψ(x1, τ1)ψ
c(x2, τ1)

]

×N
[

Abν(zj , τ2)ψ(z1, τ2)ψ
c
(z2, τ2)

]

}〉

β

(238)

and

D(x1,x2; z1, z2;E)

=

∫ 2
∏

k=1

d3ukd
3vk

2
∑

i,j=1

Ωaµi G
(i)a
µ (xi | x1,x2;u1,u2;E)

×G−1(u1,u2;v1,v2;E)G
(j)b
ν (zj | v1,v2; z1, z2;E)Ω

bν

j ;

(239)

in which G(i)aµ (xi | x1,x2;u1,u2;E), and G
(j)b
ν (zj | v1,v2;

z1, z2;E) are the Fourier transforms of the following Green
functions:

G(i)aµ (xi | x1,x2;u1,u2; τ1− τ2)

=

〈

T

{

N
[

Aaµ(xi, τ1)ψ(x1, τ1)ψ
c(x2, τ1)

]

×N
[

ψ(u1, τ2)ψ
c
(u2, τ2)

]

}〉

β

(240)

and

G(j)bν (zj | v1,v2; z1, z2; τ1− τ2)

=

〈

T

{

N
[

ψ(v1, τ1)ψ
c(v2, τ1)

]

×N
[

Abν(zj , τ2)ψ(z1, τ2)ψ
c
(z2, τ2)

]

}〉

β

. (241)

The S−1(z1, z2;y1,y2) in (231) is the inverse of the func-
tion defined by

S(x1,x2; z1, z2) = δ
3(x1−z1)γ

4
1S
c
F(x2−z2)

+ δ3(x2−z2)γ
4
2SF(x1−z1) ,

(242)

in which SF(x1−z1) and ScF(x2−z2) are the equal-time
quark and antiquark thermal propagators respectively. It is
clear that there is one-to-one correspondence between both
kernels written in (226) and (231). It is noted that the in-
teraction kernel derived in this section is nonperturbative
because the Green functions included in the kernel are de-
fined in the Heisenberg picture. Perturbative calculations
of the kernel can easily be done by using the familiar per-
turbative expansions of Green functions as illustrated in
the next section.

7 One gluon exchange kernel
and Hamiltonian

In this section, we would like to show the one-gluon
exchange kernel given by the expression in (226). In
the lowest order approximation of perturbation, only
the first term of the series in (194), i.e., the kernel
K(α+β−; γ+δ−;E) represented in (195), is needed to be
taken into account in (192) and (193). In the lowest order
approximation, as seen from (223), the first term in (226)
vanishes because the function R(λτρ; γ+δ−) gives no con-
tribution to the kernel owing to the vanishing expectation
value 〈n |âρ|n〉. Therefore, the one-gluon exchange kernel
can only arise from the second term in (226) where the
Green function G(λτρ; ξησ;E) reduces to the ordinary one
G(λτρ; ξησ;E) in the lowest order approximation because
the last term in (226) vanishes in this case for the reason as
argued for the function R(λτρ; γ+δ−). To evaluate the in-
verse S−1(µν; γ+δ−), we first evaluate S(γ+δ−;µν). From
the expression denoted in (179), it is easy to find that the
nonvanishing contribution of S(γ+δ−;µν) is given by

S(γ+δ−;µ−ν+)

= δγ+ν+Sµ−δ− − δµ−δ−Sγ+ν+

= δ
γ+ν+

δµ−δ− − δµ−δ−Sγ+ν+− δγ+ν+Sδ−µ− ,

(243)

where Sγ+ν+ and Sδ−µ− are the quark and antiquark
equal-time propagators. Their expressions, according to
the common definition, can be read from (139) and (140)
by setting τ1− τ2→ 0+:

Sγ+ν+ = δγ+ν+∆q(q1, 0
+) = δγ+ν+

1

2

[

nf (q1)−nf(q1)
]

,

Sδ−µ− = δδ−µ−∆q(q2, 0
+) = δδ−µ−

1

2

[

nf (q2)−nf(q2)
]

.

(244)

Therefore, we can write

S−1(µ−ν+; γ+δ−) = δ
γ+ν+

δµ−δ−S
−1(γδ) , (245)

where

S(γδ) = 1−
1

2

[

nf (q1)−nf(q1)+nf (q2)−nf(q2)
]

.

(246)
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Thus, to derive the lowest order approximate kernel, we
only need to consider

K(α+β−; γ+δ−;E)

=
∑

λτρ

∑

ξζσ

f(α+β−;λτρ)G(λτρ;µνσ;E)

×f(µνσ; δ−γ+)S−1(γδ) . (247)

From (169), (207), (80) and (67), it is clearly seen that
when λ, τ , µ and ν take the values λ+, τ−, µ− and ν+, the
functions f(α+β−;λτρ) and f(µνσ; δ−γ+) give the quark–
antiquark interaction taking place in the t-channel scatter-
ing process; while, when λ, τ , µ and ν take the values λ−,
τ+, µ+ and ν−, the f(α+β−;λτρ) and f(µνσ; δ−γ+) will
give the quark–antiquark vertices which describe the qq an-
nihilation process. Since the expectation value of the qq
color matrix appearing in the qq lowest order annihilation
process is zero in the color singlet, it is only necessary to
consider the following interaction kernel:

K(α+β−; γ+δ−;E)

=
∑

µν

∑

λτρ

∑

ξησ

[

f(α+β−;λ+τ−ρ+)G(λ+τ−ρ+;µ−ν+σ−;E)

×f(µ−ν+σ−; δ−γ+)+f(α+β−;λ+τ−ρ−)

×G(λ+τ−ρ−;µ−ν+σ+;E)f(µ−ν+σ+; δ−γ+)
]

S−1(γδ).

(248)

Noting that the functions f(α+β−;λ+τ−ρ)
and f(µ−ν+σ; δ−γ+) are proportional to the coupling
constant g, in the approximation of order g2, we only
need to consider the zero-order of the Green function
G(λ+τ−ρ±;µ−ν+σ∓;E). This Green function may easily
be derived from the generating functional Z0[j] repre-
sented in (96), (119), (138) and (150). The result is

G(λ+τ−ρ−;µ−ν+σ+; τ1− τ2)

=
1

Z0
δ6Z0[j}

δη∗λ(τ1)δη
∗
τ (τ1)δηµ(τ2)δην(τ2)δξ

∗
ρ(τ1)δξσ(τ2)

∣

∣

∣

j=0

= δλν∆q(kλ, τ1− τ2)δτµ∆q(kτ , τ1− τ2)δρσ∆g(kρ, τ1− τ2)

=G(λ+τ−ρ+;µ−ν+σ−; τ1− τ2) . (249)

The last equality in the above arises from the fact that
∆g(kρ, τ1− τ2) is an even function of τ1− τ2. With the ex-
pressions given in (124) and (140), the Fourier transform of
G(λ+τ−ρ−;µ−ν+σ+; τ1− τ2) can be found to be

G(λ+τ−ρ−;µ−ν+σ+;ωn) = δλνδτµδρσ
1

8
∆(λτρ) ,

(250)

where ∆(λτρ) will be specified soon.

Substitution of (169), (207) and (250) in (248) leads to

K(α+β−; γ+δ−;E)

=
1

4

[
∑

λρ

A(α+λ+ρ+)A(λ+γ+ρ−)∆(λβρ)δβδ

+
∑

τρ

A(τ−β−ρ+)A(δ−τ−ρ−)∆(ατρ)δαγ

−
∑

ρ

A(α+γ+ρ+)A(δ−β−ρ−)∆(γβρ)

−
∑

ρ

A(δ−β−ρ+)A(α+γ+ρ−)∆(αδρ)
]

S−1(γδ) ,

(251)

where the first two terms on the right hand side are uncon-
nected and represent the quark and antiquark self-energies,
while the remaining two terms precisely give the t-channel
one-gluon exchange kernel. In view of the expression in
(80) and the definitions in (67) and (71), we can write

A(α+γ+ρ±) = ig(2π)3δ3(p1−q1∓k)uσ1(p1)T
cγµ

×uσ′1
(q1)(2π)

−3/2(2ω(k))−1/2ελµ(k)

(252)

and

A(δ−β−ρ∓) = ig(2π)3δ3(q2−p2±k)vσ′2(q2)T
cγµ

× vσ2(p2)(2π)
−3/2(2ω(k))−1/2ελµ(k)

=−ig(2π)3δ3(q2−p2±k)uσ2(p2)(−T
c∗)γν

×uσ′2(q2)(2π)
−3/2(2ω(k))−1/2ελ

′

ν (k) ,

(253)

where the last equality in (253) is obtained by the charge
conjugation transformation. In the above, we have set kα =
p1, kβ = p2, kγ = q1, kδ = q2 and kρ = k. From (249),
(250), (124) and (140), it is easy to get

∆(αδρ)

=
1

2

∫ β

−β
dτeiωnτ∆q(p1, τ)∆q(q2, τ)∆g(k, τ)

= nαf n
δ
fn
ρ
b

e−β(εα+εδ+ωρ)−1

iωn− εα− εδ−ωρ
−nαf n

δ
fn
ρ
b

e−β(εα+εδ−ωρ)−1

iωn− εα− εδ+ωρ

−nαf n
δ
fn
ρ
b

e−β(εα−εδ+ωρ)−1

iωn− εα+ εδ−ωρ
+nαf n

δ
fn
ρ
b

e−β(εα−εδ−ωρ)−1

iωn− εα+ εδ+ωρ

−nαf n
δ
fn
ρ
b

eβ(εα−εδ−ωρ)−1

iωn+ εα− εδ−ωρ
+nαf n

δ
fn
ρ
b

eβ(εα−εδ+ωρ)−1

iωn+ εα− εδ+ωρ

+nαf n
δ
fn
ρ
b

eβ(εα+εδ−ωρ)−1

iωn+ εα+ εδ−ωρ
−nαf n

δ
fn
ρ
b

eβ(εα+εδ+ωρ)−1

iωn+ εα+ εδ+ωρ
≡∆(p1,q2,k;ωn) (254)



J.-C. Su: Rigorous relativistic equation for quark–antiquark bound states at finite temperature 779

and

∆(γβρ)

=
1

2

∫ β

−β
dτeiωnτ∆q(p2, τ)∆q(q1, τ)∆g(k, τ)

= nγf n
β
f n
ρ
b

e−β(εγ+εβ+ωρ)−1

iωn− εγ− εβ−ωρ
−nγf n

β
f n
ρ
b

e−β(εγ+εβ−ωρ)−1

iωn− εγ− εβ+ωρ

−nγf n
β
f n
ρ
b

e−β(εγ−εβ+ωρ)−1

iωn− εγ+ εβ−ωρ
+nγf n

β
f n
ρ
b

e−β(εγ−εβ−ωρ)−1

iωn− εγ+ εβ+ωρ

−nγf n
β
f n
ρ
b

eβ(εγ−εβ−ωρ)−1

iωn+ εγ− εβ−ωρ
+nγf n

β
f n
ρ
b

eβ(εγ−εβ+ωρ)−1

iωn+ εγ− εβ+ωρ

+nγf n
β
f n
ρ
b

eβ(εγ+εβ−ωρ)−1

iωn+ εγ+ εβ−ωρ
−nγf n

β
f n
ρ
b

eβ(εγ+εβ+ωρ)−1

iωn+ εγ+ εβ+ωρ
≡∆(p2,q1,k;ωn) , (255)

where

εα =
√

p21+m1, εβ =
√

p22+m2, εγ =
√

q21+m1,

εδ =
√

q22+m2, ωρ = |k| . (256)

It is noted here that the chemical potential is not taken
into account for the bound state. Other expressions for the
functions ∆(αδρ) and ∆(γβρ) may be given by making use
of the expansions presented in (A.10) and (A.19) in the
appendix. Since the expressions contain infinite series, it
might be not convenient for our purpose. Upon inserting
(252)–(255) into the last two terms in (251) and notic-
ing the definition in (72), after completing the integration
over k and the summation over the polarization index, we
obtain

K(α+β−; γ+δ−;E) =K(p1,p2;q1,q2;E)

= (2π)−3δ3(p1+p2−q1−q2)

×V (p1,p2;q1,q2;E) , (257)

where the iωn in (254) and (255) has been replaced by E,
and

V (p1,p2;q1,q2;E) = uσ1(p1)T
cγµuσ′1

(q1)uσ2(p2)T
c∗γµ

×uσ′2(q2)D(p1,p2;q1,q2) (258)

in which

D(p1,p2;q1,q2) =
1

8ω(p1−q1)
[∆(p1,q2,p1−q1)

+∆(p2,q1,p1−q1)]S
−1(q1,q2) .

(259)

With the kernel given above, the equation in (192) can be
written as

[E− ε(p1)− ε(p2)]χPα(p1,p2)

=

∫

d3q1d
3q2K(p1,p2;q1,q2)χPα(q1,q2) .

(260)

When we introduce the cluster momenta

P= p1+p2, Q= q1+q2, q= η2p1−η1p2,

k= η2q1−η1q2, η1 =
m1

m1+m2
, η2 =

m2

m1+m2
,

(261)

in the center of mass frame, (260) will be represented as

[E− ε(p1)− ε(p2)]χPα(q) =

∫

d3k

(2π)3
V (P,q,k)χPα(k).

(262)

As we know, the spinor function in (258) can be written as
uσ(p) = U(p)ϕσ where ϕσ is the spin wave function and
U(p) is the ordinary Dirac spinor determined by the Dirac
equation. The spin wave functions may be absorbed into
the amplitude ψ(αβ;E) appearing in (193). Thus, corres-
ponding to the align in (262), the equation in (193) will be
represented as

[E− ε1(q)− ε2(q)]ψPα(q) =

∫

d3k

(2π)3
̂V (P;q,k)ψPα(k) ,

(263)

where ψPα(q) stands for the color singlet wave function
given in the Pauli spinor space, and

̂V (P;q,k)

=−
4

3
g2U(p1)γµU(q1)U(p2)γ

µU(q2)D(P,q,k)

(264)

represents the one-gluon exchange interaction Hamilto-
nian which formally is the same as given in the case of
zero temperature [17]. In (264), we have recovered the
Minkowski metric for the γ-matrix in order to compare
with the ordinary zero-temperature result and consid-
ered that the expectation value of the qq color operator
T a1 (−T

a∗
2 ) in the color singlet equals −

4
3 .

8 Concluding remarks

In this paper, there are two new achievements. One is that
the path-integral formalism of the thermal QCD has been
correctly established in the coherent-state representation.
The expression of the QCD generating functional formu-
lated in this paper not only gives an alternative quantiza-
tion of the QCD, but also provides a general method for
calculating the partition function, the thermal Green func-
tions and thereby other statistical quantities of QCD in
the coherent-state representation. In particular, the gener-
ating functional enables us to carry out analytical calcu-
lations without being concerned with its discretized form.
As one has seen from Sect. 4, the analytical calculation of
the zero-order generating functional is simpler and more
direct than the previous calculations performed in the dis-
cretized form given either in the coherent-state represen-
tation or in the position space [18–22]. The coherent-state
path-integral formalism corresponds to the operator for-
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malism represented in terms of creation and annihilation
operators. In comparison with the latter formalism, which
was frequently applied in the many-body theory [21, 29],
the coherent-state path-integral formalism has the promi-
nent advantage that in calculations within this formalism
the use of the operator commutators and the Wick theo-
rem is completely avoided. Therefore, it is more conve-
nient for practical applications. It should be noted that
although the QCD generating functional is derived in the
Feynman gauge, the result is exact. This is because QCD
is a gauge-independent theory. As shown in Sect. 4, in the
partition function derived in the Feynman gauge, the un-
physical part of the partition function given by the unphys-
ical degrees of freedom of gluons is completely cancelled
out by the partition function arising from the ghost par-
ticles. Certainly, the generating functional formulated in
the coherent-state representation can be established in ar-
bitrary gauges. But, in this case, the gluon propagator
would have a rather complicated form due to the fact that
the longitudinal part of the propagator will involve the po-
larization vector. Another point we would like to mention is
that to formulate the quantization of thermal QCD in the
coherent-state representation, we limit ourself to work in
the imaginary-time formalism. There is no doubt that the
theory can also be described in the real-time formalism.We
leave the discussion of this subject to the future.
The main achievement of this paper is the foundation

of a rigorous three-dimensional equation for the qq bound
states at finite temperature. Especially, the interaction ker-
nel in this equation is given by a closed expression in
the coherent-state representation. This kernel, as shown in
(226), contains only a few types of Green functions with
some definite coefficients. We also give the correspond-
ing closed expression represented in the position space. As
shown in (231)–(242), in this expression only a few types
of Green functions and commutators are involved. There-
fore, the kernel cannot only easily be calculated by the
perturbation method but also is suitable for nonperturba-
tive investigations by using the lattice gauge approach and
some others. Since the kernel contains all the interactions
taking place in the bound state, obviously, the kernel and
the equation presented in the preceding sections are very
suitable to study quark deconfinement at high tempera-
ture, which is nowadays an important theoretical problem
in high energy physics. It is expected that an accurate non-
perturbative calculation of the kernel could come up in the
future so as to give the problem of quark deconfinement
a definite solution.

Acknowledgements. This work was supported by National Nat-
ural Science Foundation of China.

Appendix : Derivation of the generating
functional represented in the
position space

To confirm the correctness of the results derived in Sect. 4,
in this appendix we plan to derive the familiar pertur-

bative expansion of the thermal QCD generating func-
tional represented in the position space from the corres-
ponding one given in Sect. 4. For this purpose, we need
to derive the generating functional represented in pos-
ition space for the free system, which can be written
as

Z0[J ] = Z0g
[

Jaµ
]

Z0q
[

I, I
]

Z0c

[

Ka,K
a
]

, (A.1)

where Z0g [J
a
µ ], Z

0
q [I, I] and Z

0
c [K

a,K
a
] are the position

space generating functionals arising respectively from
the free gluons, quarks and ghost particles, and Jaµ , I,

I, Ka and K
a
are the sources coupled to gluon, quark

and ghost particle fields respectively. In order to write
out the Z0q [I, I], Z

0
g [J

a
µ ] and Z

0
c [K

a,K
a
] from the gen-

erating functionals given in (119), (138) and (150), it
is necessary to establish relations between the sources
introduced in the position space and in the coherent-
state representation. Let us separately discuss the func-
tionals Z0q [I, I], Z

0
g [J

a
µ ] and Z

0
c [K

a,K
a
]. First we fo-

cus our attention on the functional Z0q [I, I]. Usually,
the external source terms of fermions in the generating
functional given in the position space are of the form
∫ β

0 dτ
∫

d3x[I(x, τ)ψ(x, τ)+ψ(x, τ)I(x, τ)] [22, 32]. Sub-
stituting in this expression the Fourier expansions in (58)
and (59) for the quark fields and for the sources in the
following,

I(x, τ) =

∫

d3k

(2π)3/2
I(k, τ)eikx ,

I(x, τ) =

∫

d3k

(2π)3/2
I(k, τ)e−ikx , (A.2)

we have

∫ β

0

dτ

∫

d3x
[

I(x, τ)ψ(x, τ)+ψ(x, τ)I(x, τ)
]

=

∫ β

0

dτ

∫

d3k
[

η∗s(k, τ)bs(k, τ)+ b
∗
s(k, τ)ηs(k, τ)

+η∗s(k, τ)ds(k, τ)+d
∗
s(k, τ)ηs(k, τ)

]

, (A.3)

where

ηs(, τ) = us(k)I(k, τ), η
∗
s(k, τ) = I(k, τ)us(k),

ηs(k, τ) =−I(−k, τ)vs(k), η
∗
s(k, τ) =−vs(k)I(−k, τ).

(A.4)

From these relations and the property of Dirac spinors, the
relation in (137) is easily proved. On substituting (A.4)
into (138), one can get

Z0q [I, I] = Z
0
q exp

{

∫ β

0

dτ1

∫ β

0

dτ2

∫

d3kI(k, τ1)

×SF(k, τ1− τ2)I(k, τ2)

}

,

(A.5)
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where

SF(k, τ1− τ2) = [(k+m)/ε(k)]∆q(k, τ1− τ2) (A.6)

with k=γµk
µ and kµ = (k, iεn). By making use of the in-

verse transformation of (A.2), the generating functional in
(A.5) is finally represented as [22, 32]

Z0q [I, I]

= Z0q exp

{

∫ β

0

d4x1

∫ β

0

d4x2I(x1)SF(x1−x2)I(x2)

}

,

(A.7)

where x= (x, τ), d4x= dτd3x and

SF(x1−x2) =

∫

d3k

(2π)3
SF(k, τ1− τ2)e

ikx . (A.8)

It is well-known that the propagator ∆ss
′

q (k, τ1− τ2) is an-
tiperiodic,

∆ss
′

q (k, τ1− τ2) =−∆
ss′

q (k, τ1− τ2−β), if τ1 � τ2

∆ss
′

q (k, τ1− τ2) =−∆
ss′

q (k, τ1− τ2+β), if τ1 ≺ τ2 .
(A.9)

This can easily be proved from its representation in the op-
erator formalism as shown in (46) or (154) with the help

of the translation transformation ̂bs(τ) = e
β ̂K

̂bse
−β ̂K and

the trace property Tr(AB) = Tr(BA). According to the
antiperiodic property of the propagator, we have the fol-
lowing expansion:

∆q(k, τ) =
1

β

∑

n

∆q(k, εn)e
−iεnτ , (A.10)

where τ = τ1− τ2, εn =
π
β
(2n+1), with n being an integer,

and

∆q(k, εn) =

∫ β

0

dτeiεnτ∆q(k, τ) =
ε(k)

ε2n+ ε(k)
2
.

(A.11)

Substituting (A.10) into (A.6) and noticing the above ex-
pression, it can be found that [22, 32]

SF(x1−x2) =
1

β

∑

n

∫

d3k

(2π)3
eik(x1−x2)−iεn(τ1−τ2)

γk+m− iεnγ0
,

(A.12)

which is the familiar expression for the thermal fermion
propagator in the position space.
Next, we discuss the generating functional Z0g [J

a
µ ]. The

source term of gluons in the generating functional given
in the position space is commonly taken as

∫ β

0
dτ

∫

d3x
Jaµ(x, τ)A

aµ(x, τ) [22, 32]. Employing the expansions in
(60) and in the following expression:

Jaµ(x, τ) =

∫

d3k

(2π)3/2
Jaµ(k, τ)e

ikx , (A.13)

we can write

∫ β

0

dτ

∫

d3xJcµ(x, τ)A
cµ(x, τ)

=

∫ β

0

dτ

∫

d3k
[

ξc∗λ (k, τ)a
c
λ(k, τ)+a

c∗
λ (k, τ)ξ

c
λ(k, τ)

]

,

(A.14)

where

ξcλ(k, τ) = (2ω(k))
−1/2εµλ(k)J

c
µ(k, τ) = ξ

c∗
λ (−k, τ) ,

(A.15)

in which the last equality follows from Jaµ(x, τ) being a real
function. Inserting the relations in (A.15) and then the in-
verse transformation of (A.13) into (119) and considering
completeness of the polarization vectors, one may find the
generating functional Z0g [J

a
µ ] [22, 32],

Z0g [J
a
µ ] = Z

0
g exp

{

1

2

∫ β

0

d4x1

∫ β

0

d4x2

×Jaµ(x1)D
ab
µν(x1−x2)J

b
ν(x2)

}

, (A.16)

where

Dabµν(x1−x2)

= δabδµν

∫

d3k

(2π)3
1

ω(k)
∆g(k, τ1− τ2)e

ik(x1−x2) .

(A.17)

By the same argument as mentioned for (A.9), it can be
proved that the gluon propagator ∆g(k, τ1− τ2) is a peri-
odic function

∆g(k, τ1− τ2) = ∆g(k, τ1− τ2−β), if τ1 � τ2 ;

∆g(k, τ1− τ2) = ∆g(k, τ1− τ2+β), if τ1 ≺ τ2 .
(A.18)

Therefore, we have the expansion

∆g(k, τ) =
1

β

∑

n

∆g(k, ωn)e
−iωnτ , (A.19)

where ωn =
2πn
β and

∆g(k, ωn) =

∫ β

0

dτeiωnτ∆g(k, τ) =
ω(k)

ε2n+ω(k)
2
.

(A.20)

Upon substituting (A.19) and (A.20) in (A.17), we arrive
at [22, 32]
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Dabµν(x1−x2) = δ
ab 1

β

∑

n

∫

d3k

(2π)3
δµν

ε2n+ω(k)
2

× eik(x1−x2)−iωn(τ1−τ2) , (A.21)

which just is the gluon propagator given in the position
space and in the Feynman gauge.
Finally, we turn to the generating functional

Z0c [K
a,K

a
]. In accordance with the expansions in (62) and

(63) for the ghost particle fields and those for the external
sources:

Ka(x, τ) =

∫

d3k

(2π)3/2
Ka(k, τ)eikx ,

K
a
(x, τ) =

∫

d3k

(2π)3/2
K
a
(k, τ)e−ikx , (A.22)

the relation between the sources in the position space and
in the coherent-state representation can be found to be

∫ β

0

dτ

∫

d3x
[

K
a
(x, τ)Ca(x, τ)+C

a
(x, τ)K(x, τ)

]

=

∫ β

0

dτ

∫

d3k[ζ∗a(k, τ)ca(k, τ)+ c
∗
a(k, τ)ζa(k, τ)

+ ζ
∗
a(k, τ)ca(k, τ)+ c

∗
a(k, τ)ζa(k, τ)] , (A.23)

where

ζa(k, τ) = (2ω(k))
−1/2Ka(k, τ) ,

ζ∗a(k, τ) = (2ω(k))
−1/2K

a
(k, τ) ,

ζa(k, τ) =−(2ω(k))
−1/2K

a
(−k, τ) ,

ζ
∗
a(k, τ) =−(2ω(k))

−1/2Ka(−k, τ) , (A.24)

from which the relations in (149) directly follow. When the
above relations and the inverse transformations of (A.22)
are inserted into (150), one can get

Z0c [K
a,K

a
] = Z0c exp

{

−

∫ β

0

d4x1

∫ β

0

d4x2K
a
(x1)

×∆abc (x1−x2)K
b(x2)

}

,

(A.25)

where

∆abc (x1−x2)

= δab
∫

d3k

(2π)3
1

ω(k)
∆g(k, τ1− τ2)e

ik(x1−x2)

= δab
1

β

∑

n

∫

d3k

(2π)3
1

ε2n+ω(k)
2
eik(x1−x2)−iωn(τ1−τ2) ,

(A.26)

which just is the free ghost particle propagator given in the
position space [22, 32]. In the last equality of (A.26), the
expansion given in (A.19) and (A.20) have been used.

With the generating functionals given in (A.7), (A.16)
and (A.25), the zeroth-order generating functional in (A.1)
is explicitly represented in terms of the propagators and
external sources. Clearly, the exact generating functional
can immediately be written from (95) as shown in the
following:

Z[J ] = exp

{

−

∫ β

0

d4xHI

(

δ

δJ(x)

)

}

Z0[J ] ,

(A.27)

where J stands for I, I, Jaµ K
a andK

a
, δ
δJ(x) represents the

differentials δ

δI(x)
, − δ

δI(x) ,
δ

δJaµ(x)
, δ

δK
a
(x)
and − δ

δKa(x) and

HI(
δ

δJ(x) ) can be written from (57) when the field functions

in (57) are replaced by the differentials with respect to the
corresponding sources.
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